Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

БИОСТИМУЛЯТОРЫ РОСТА И УСТОЙЧИВОСТИ РАСТЕНИЙ ТЕРПЕНОИДНОЙ ПРИРОДЫ И ДРУГИЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ СОЕДИНЕНИЯ, ПОЛУЧЕННЫЕ ИЗ ХВОЙНЫХ ПОРОД

https://doi.org/10.21285/2227-2925-2018-8-4-32-41

Полный текст:

Аннотация

Применение биостимуляторов - один из путей повышения урожайности и устойчивости сельскохозяйственных растений, который активно развивается в последние годы. В качестве биостимуляторов используется широкий круг веществ, смесей как выясненной, так и неизвестной химической природы. Одним из источников получения биостимуляторов являются хвойные деревья, что оправдано как с экономической, так и с экологической точки зрения. Важнейший класс биологически активных соединений, выделяемых из древесины (а также хвои и коры) хвойных пород, - терпеноиды, одна из самых крупных и разнообразных групп веществ природного происхождения. В данной работе рассмотрены пути биосинтеза терпеноидов, ферменты и гены, принимающие участие в этом процессе, внутриклеточная компартментализация их метаболизма и места накопления в живых тканях. Приведены примеры успешного применения препаратов из хвойных пород, содержащих как терпеноиды, так и некоторые другие группы веществ. Отмечается, что во многих случаях остается невыясненным активное соединение, механизм действия и молекулярные мишени препаратов, что, однако, не мешает в ряде случаев применять подобные препараты не только в исследовательских целях, но и в сельском хозяйстве различных стран, в том числе Российской Федерации. В перспективе ставится задача управления синтезом терпеноидов и других веществ хвойных в целях повышения выхода целевых сое-динений для непосредственного применения в растениеводстве, либо предварительной модификации природных соединений с помощью химических реакций.

Об авторах

Е. Л. Горбылева
Сибирский институт физиологии и биохимии растений СО РАН
Россия


Г. Б. Боровский
Сибирский институт физиологии и биохимии растений СО РАН
Россия


Список литературы

1. Jayaraj J., Wan A., Rahman M., Punja Z.K. Seaweed extract reduces foliar fungal diseases on carrot. Crop Protection. 2008. V. 27. Issue 10. P. 1360-1366. https://doi.org/10.1016/j.cropro.2008.05.005

2. Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A.T., Craigie J.C., NorrieJ., Prithiviraj B. Seaweed extracts as biostimulants of plant growth and development // J. Plant Growth Regul. 2009. V. 28. P. 386-399. DOI: 10.1007/s00344-009-9103-x

3. Du Jardin P. The science of plant biosti-mulants - A bibliographic analysis. Ad hoc study report to the European Commission. 2012. URL: http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/finalreportbio2012en.pdf (25.09.2018).

4. Hernandez-Herrera R.M., Santacruz-Ruval-caba F., Ruiz-Lopez M.A., Norrie J., Hernandez-Carmona G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.) // J. Appl. Phycol. 2014. V. 26. P. 619-628. DOI: 10.1007/s10811-013-0078-4

5. Du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation // Scientia Horticulturae. 2015. V. 196. P. 3-14. https://doi.org/ 10.1016/j.scienta.2015.09.021

6. Vargas-Hernandez M., Macias-Bobadilla I., Guevara-Gonzalez R.G., Romero-Gomez S. de J., Rico-Garcia E., Ocampo-Velazquez R.V., Alvarez-Arquieta L. de L., Torres-Pacheco I. Plant hormesis management with biostimulants of biotic origin in agriculture // Front. Plant Sci. 2017. V. 8. 1762. DOI: 10.3389/fpls.2017.01762

7. Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H. Biostimulants in plant science: A global perspective // Front. Plant Sci. 2017. V. 7. 2049. DOI: 10.3389/fpls.2016.02049

8. Buckingham J., Cooper C.M., Purchase R. Natural Products Desk Reference. CRC Press, Taylor & Francis Group: Boca Raton. 2016, 235 p. Croteau R., Kutchan T.M., Lewis N.G. Natural products // Biochemistry and molecular biology of plants (Buchanan B., Gruissem W., Jones R. eds). Rockville, MD: American Society of Plant Physiologists. 2000. P. 1250-1318.

9. Gershenzon J., Dudareva N. The function of terpene natural products in the natural world // Nat. Chem. Biol. 2007. V. 3. P. 408-414. DOI: 10.1038/ nchembio.2007.5

10. Bohlmann J., Keeling C.I. Terpenoid biomaterials // The Plant Journal. 2008. V. 54. P. 656-669. DOI: 10.1111/j.1365-313X.2008.03449.x

11. Lange B.M., Rujan T., Martin W., Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes // Proc. Natl Acad. Sci. USA. 2000. V. 97. P. 13172-13177. DOI: https://doi.org/10.1073/pnas.240454797

12. Lichtenthaler H.K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999. V. 50. P. 47-65. DOI: https://doi.org/10.1146/ annurev.arplant.50.1.47

13. Miller B., Oschinski C., Zimmer W. First iso-lation of an isoprene synthase gene frompoplar and successful expression of the gene in Escherichia coli // Planta. 2001. V. 213. P. 483-487. DOI: https://doi.org/ 10.1007/s004250100557

14. Takahashi S., Koyama T. Structure and function of cisprenyl chain elongating enzymes // Chem. Rev. 2006. V. 6. P. 194-205. DOI: https://doi.org/ 10.1002/tcr.20083

15. Bohlmann J., Meyer-Gauen G., Croteau R. Plant terpenoid synthases: molecular biology and phylogenetic analysis // Proc. Natl Acad. Sci. USA. 1998. V. 95. P. 4126-4133. DOI: https://doi.org/ 10. 1073/pnas.95.8.4126

16. Christianson D.W. Structural biology and chemistry of the terpenoid cyclases // Chem. Rev. 2006. V. 106. P. 3412-3442. DOI: 10.1021/cr050286w Christianson D.W. Structural and chemical biology of terpenoid cyclases // Chem. Rev. 2017. V. 117. P. 11570-11648. DOI: 10.1021/acs.chemrev. 7b00287

17. Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism // Curr. Opin. Plant Biol. 2006. V. 9. P. 297-304. DOI: https://doi.org/10.1016/j.pbi.2006.03.014

18. Facchini P.J., DeLuca V. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants // Plant J. 2008. V. 54. P. 763-784. DOI: https://doi.org/10. 1111/j.1365-313X.2008.03438.x

19. Keeling C.I., Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens // New Phytol. 2006. V. 170. P. 657-675. DOI: https://doi.org/10.1111/j.1469-8137. 2006.01716.x

20. Keeling C.I., Bohlmann J. Diterpene resin acids in conifers // Phytochemistry. 2006. V. 67. P. 2415-2423. DOI: https://doi.org/10.1016/j.phytochem. 2006.08.019

21. Savage T.J., Hamilton B.S., Croteau R. Bio-synthesis of short-chain alkanes. Tissue-specific bio-synthesis of n-heptane in Pinus jeffreyi // Plant Physiol. 1996. V. 110. P. 179-186. DOI: https://doi.org/10. 1104/pp.110.1.179

22. Savage T.J., Hristova M.K., Croteau R. Evidence for an elongation/reduction/C1-elimination pathway in the biosynthesis of n-heptane in xylem of Jeffrey pine // Plant Physiol. 1996. V. 111. P. 1263-1269. DOI: https://doi.org/10.1104/pp.111.4.1263

23. Trapp S., Croteau R. Defensive resin bio-synthesis in conifers // Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001. V. 52. P. 689-724. DOI: https://doi.org/ 10.1146/annurev.arplant.52.1.689

24. Bohlmann J., Phillips M., Ramachandiran V., Katoh S., Croteau R. cDNA cloning, characterization, and functional expression of four new monoterpene synthases of the TPSd gene family from grand fir (Abies grandis) // Arch. Biochem. Biophys. 1999. V. 368. P. 232-243. DOI: https://doi.org/10. 1006/abbi.1999.1332

25. Phillips M.A., Wildung M.R., Williams D.C., Hyatt D.C., Croteau R. cDNA isolation, functional expression, and characterization of a (+)-α-pinene synthase and (-)-α-pinene synthase from loblolly pine (Pinus taeda): stereocontrol in pinene biosynthesis // Arch. Biochem. Biophys. 2003. V. 411. P. 267-276. DOI: https://doi.org/10.1016/S0003-9861(02)00746-4

26. Martin D.M., Faldt J., Bohlmann J. Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily // Plant Physiol. 2004. V. 135. P. 1908-1927. DOI: https://doi.org/10. 1104/pp.104.042028

27. Peters R.J., Carter O.A., Zhang Y., Matthews B.W., Croteau R.B. Bifunctional abietadiene synthase: mutual structural dependence of the active sites for protonation-initiated and ionization-initiated cyclizations // Biochemistry. 2003. V. 42. P. 2700-2707. DOI: 10.1021/bi020492n

28. Vogel B.S, Wildung M.R., Vogel G., Croteau R. Abietadiene synthase from grand fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis // J. Biol. Chem. 1996. V. 271. P. 23262-23268. DOI: 10.1074/jbc.271.38. 23262

29. Ro D.K., Arimura G., Lau S.Y., Piers E., Bohlmann J. (2005) Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 8060-8065. DOI: https://doi.org/10.1073/pnas.0500 825102

30. Hamberger B., Bohlmann J. Cytochrome P450 mono-oxygenases in conifer genomes: disco-very of members of the terpenoid oxygenase super-family in spruce and pine // Biochem. Soc. Trans. 2006. V. 34. P. 1209-1214. DOI: 10.1042/BST0341209

31. Helliwell C.A., Poole A., Peacock W.J., Den-nis E.S. Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis // Plant Phy-siol. 1999. V. 119. P. 507-510. DOI: https://doi.org/ 10. 1104/ pp. 119.2.507

32. Ro D.-K., Bohlmann J. Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene syn thase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1) // Phytochemistry. 2006. V. 67. P. 1572-1578. DOI: https://doi.org/10.1016/j.phy-tochem.2006.01.011

33. Fahn A. Secretory tissues in vascular plants // New Phytol. 1988. V. 108. P. 229-257 DOI: https://doi.org/10.1111/j.1469-8137.1988.tb04159.x Franceschi V.R., Krokene P., Christiansen E., Krekling T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests // New Phytol. 2005. V. 167. P. 353-376. DOI: https://doi.org/10.1111/j.1469-8137.2005.01436.x

34. Martin D., Tholl D., Gershenzon J., Bohl mann J. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis and terpenoid accumulation in developing xylem of Norway spruce (Picea abies) stems // Plant Physiol. 2002. V. 129. P. 1003-1018. DOI: https://doi.org/10.1104/pp.011001

35. Miller B., Madilao L.L., Ralph S., Bohlmann Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid path way transcripts in Sitka spruce // Plant Physiol. 2005. V. 137. P. 369-382. DOI: https://doi.org/10.1104/ pp.104.050187 Li S.H., Niu X.M., Zahn S., Gershenzon J., Weston J., Schneider B. Diastereomeric stilbene glucoside dimers from the bark of Norway spruce (Picea abies) // Phytochemistry. 2008. V. 69. P. 772-782. DOI: https://doi.org/10.1016/j.phytochem. 2007. 08.033

36. Volkova J., Laugale V., Lepse L., Baženo va A., Jankevica L., Daugavietis M. Evaluation of spruce biomass extract for control of grey mould (Botrytis cinerea) in field-grown strawberries // Environ. Exp. Biol. 2014. V.12. P. 89-93.

37. Guynot M.E., Ramos A.J., Setó L., Purroy P., Sanchis V., Marínhttps S. Antifungal activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products // J. Appl. Microbiol. 2003. V. 94. P. 893-899. DOI: http: //doi.org/10.1046/j.1365-2672. 2003.01927.x

38. Hammer K.A., Carson C.F., Riley T.V. Anti-fungal activity of the components of Melaleuca alternifolia (tea tree) oil // J. Appl. Microbiol. 2003. V. 95. P. 853-860. DOI: https://doi.org/10.1046/j.1365-2672.2003.02059.x

39. Suhr K.I., Nielsen P.V. Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi // J. Appl. Microbiol. 2003. V. 94. P. 665-674. DOI: https://doi.org/10.1046/j.1365-2672.2003.01896.x

40. Ludley K.E., Robinson C.H., Jickells S., Chamberlain P.M., Whitaker J. Differential response of ectomycorrhizal and saprotrophic fungal mycelium from coniferous forest soils to selected monoterpenes // Soil Biol. Biochem. 2008. V. 40. P. 669-678. DOI: 10.1016/j.soilbio.2007.10.001

41. Иванова С.З., Федорова Т.Е., Федоров С.В., Бабкин В.А. Cтильбены коры лиственницы Гмелина // Химия растительного сырья. 2008. N 4. С. 83-88.

42. Евтушенко Е.В., Сапрыкин В.А., Галицын М.Ю., Чекуров В.М. Влияние биологически актив-ных веществ из хвойных на активность L-фенил-аланин-аммоний-лиазы и пероксидазы в листьях пшеницы // Прикладная биохимия и микробиология. 2008. Т. 44. N 1. С. 123-128. DOI: https://doi.org/ 10.1134/S0003683808010195

43. Патент РФ, N 2108803. Способ получения биологически активной суммы тритерпеновых кис лот / В.А. Ралдугин, А.Г. Друганов, В.П. Климов, А.Н. Шубин, В.М. Чекуров; заявитель и патенто-обладатель Новосибирский институт органической химии СО РАН; заявл. 08.04.1997; опубл. 20.04.1998. Применение препарата силк в зерно-производстве: рекомендации / А.Н. Власенко, Н.Г. Власенко, В.К. Каличкин, С.А. Ким, М.Т. Егорычева, С.В. Сазанович [и др.]. Новосибирск: Изд-во СибНИИЗиХ, 2001. 19 с.

44. Ларионов Г.И., Тарасова О.Е., Высоцкая Л.В. Силк на зерновых культурах в Хакасии // Защита и карантин растений. 2002. N 11. C. 33-41.

45. Graskova I.A., Kuznetsova E.V., Zhivetiev M.A., Chekurov V.M, Voinikov V.K. Effect of conife-rous extract on potato plants // Journal of Stress Phy-siology & Biochemistry. 2009. V. 5. No. 1-2. P. 38-44.

46. Тариков С., Тимбекова А.Е., Абубакиров Н.К., Коблов Р.К. Тритерпеновые гликозиды обладают рострегулирующей активностью // Узбек-ский биологический журнал. 1988. N 6. С. 24-26.

47. Давидянц Э.С., Нешина Л.П., Нешин И.В. Влияние тритерпеновых гликозидов Silphium perfoliatum L. на рост проростков гороха и пшеницы // Растительные ресурсы. 2001. Т. 37. N 3. С. 93-97.

48. Ohara S., Ohira T. Plant growth regulation effects of triterpenoid saponins // Journal of Wood Science. 2003. V. 49. Issue 1. P. 0059-0064. DOI: https://doi.org/10.1007/s100860300010

49. Давидянц Э.С. Влияние тритерпеновых гликозидов на активность α и β амилаз и содер-жание суммарного белка в проростках пшеницы // Прикладная биохимия и микробиология. 2011. Т. 47. N 5, С. 530-536.


Для цитирования:


Горбылева Е.Л., Боровский Г.Б. БИОСТИМУЛЯТОРЫ РОСТА И УСТОЙЧИВОСТИ РАСТЕНИЙ ТЕРПЕНОИДНОЙ ПРИРОДЫ И ДРУГИЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ СОЕДИНЕНИЯ, ПОЛУЧЕННЫЕ ИЗ ХВОЙНЫХ ПОРОД. Известия вузов. Прикладная химия и биотехнология. 2018;8(4):32-41. https://doi.org/10.21285/2227-2925-2018-8-4-32-41

For citation:


Gorbyleva E.L., Borovskii G.B. GROWTH AND STABILITY BIOSTIMULATORS FOR PLANTS CONTAINING TERPENOIDS AND OTHER BIOLOGICALLY-ACTIVE COMPOUNDS. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(4):32-41. (In Russ.) https://doi.org/10.21285/2227-2925-2018-8-4-32-41

Просмотров: 6


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)