химическая технология

Научная статья УДК 665.753.4 EDN: ARFICK

DOI: 10.21285/achb.995

Синтез и исследование свойств новых депрессорных присадок к дизельным топливам на основе сополимеров этилена и стирола

Н.П. Гоненко*[⊠], Т.В. Раскулова**, Л.В. Каницкая***, И.Е. Кузора**, Н.П. Коновалов*

Аннотация. Цель исследования заключалась в получении депрессорной присадки к дизельному топливу на основе полупродуктов и отходов производств предприятий «Ангарская нефтехимическая компания» и «Ангарский завод полимеров». В работе приведен краткий обзор требований к качеству дизельных топлив, продемонстрировано качество базовых дизельных топлив производства АО «Ангарская нефтехимическая компания». Дана характеристика депрессорно-диспергирующих присадок, вовлекаемых в товарные дизельные топлива на производствах, а также методов и объектов исследований. Установлен механизм взаимодействия стирола и низкомолекулярного полиэтилена в ходе процесса радикальной сополимеризации. Определены основные закономерности сополимеризации стирола и низкомолекулярного полиэтилена. Выявлена структура сополимера стирола и низкомолекулярного полиэтилена. Определен депрессорный эффект от применения присадок для базовых дизельных топлив с различными низкотемпературными характеристиками. Проиллюстрирована зависимость низкотемпературных свойств базовых дизельных топлив и концентрации присадки. Установлено, что использование новых депрессорных присадок в количестве от 0,1 до 1,0% масс. позволяет снизить температуру их застывания до минус 42 °C и обеспечить депрессию предельной температуры фильтруемости до 21 °C. Использование разработанной депрессорной присадки позволит без изменения фракционного состава на базе летнего дизельного топлива сорта А получать межсезонные дизельные топлива сортов D, E, а на базе зимнего дизельного топлива сорта D возможно производство зимних топлив класса 0, 1, 2 с более высокой добавленной стоимостью.

Ключевые слова: стирол, низкомолекулярный полиэтилен, депрессорные присадки, сополимеризация, дизельное топливо

Для цитирования: Гоненко Н.П., Раскулова Т.В., Каницкая Л.В., Кузора И.Е., Коновалов Н.П. Синтез и исследование свойств новых депрессорных присадок к дизельным топливам на основе сополимеров этилена и стирола // Известия вузов. Прикладная химия и биотехнология. 2025. Т. 15. N 3. C. 412–422. DOI: 10.21285/achb.995. EDN: ARFICK.

412

^{*}Иркутский национальный исследовательский технический университет, Иркутск, Российская Федерация

^{**}Ангарский государственный технический университет, Ангарск, Российская Федерация

^{***}Байкальский государственный университет, Иркутск, Российская Федерация

[©] Гоненко Н.П., Раскулова Т.В., Каницкая Л.В., Кузора И.Е., Коновалов Н.П., 2025

CHEMICAL TECHNOLOGY

Original article

Synthesis and evaluation of pour-point depressants for diesel fuels based on ethylene – styrene copolymers

Nikolai P. Gonenko*≅, Tatyana V. Raskulova**, Lyudmila V. Kanitskaya***, Igor E. Kuzora**, Nikolai P. Konovalov*

- *Irkutsk National Research Technical University, Irkutsk, Russian Federation
- **Angarsk State Technical University, Angarsk, Russian Federation
- ***Baikal State University, Irkutsk, Russian Federation

Abstract. This study aimed to synthesize a pour-point depressant for diesel fuel using intermediate products and waste materials from the Angarsk Petrochemical Company and the Angarsk Polymer Plant (Angarsk, Russia). The work provides a brief review of the quality requirements for diesel fuel and demonstrates the quality of base diesel fuels produced by Angarsk Petrochemical Company. The study characterizes the depressant-dispersant additives used in the production of commercial diesel fuels, along with the research methods and objects. The mechanism of interaction between styrene and low-molecular-weight polyethylene during radical copolymerization was established. The key patterns of the styrene and low-molecular-weight polyethylene copolymerization process were identified, and the structure of the resulting copolymer was determined. The depressor effect of the additives was assessed in base diesel fuels with different low-temperature characteristics. The relationship between the low-temperature characteristics of the base diesel fuels and the additive concentration was illustrated. The use of the novel pour-point depressants at concentrations of 0.1–1.0 wt% was found to reduce the pour point to -42 °C, thereby achieving a depression of the cold filter plugging point to 21 °C. The use of the developed pour-point depressant facilitates the production of value-added interseasonal diesel grades D and E from summer diesel grade A base fuels without altering the fractional composition. In addition, the value-added winter diesel classes 0, 1, and 2 can be obtained from winter diesel grade D base fuels.

Keywords: styrene, low-molecular-weight polyethylene, pour-point depressants, copolymerization, diesel fuel

For citation: Gonenko N.P., Raskulova T.V., Kanitskaya L.V., Kuzora I.E., Konovalov N.P. Synthesis and evaluation of pour-point depressants for diesel fuels based on ethylene – styrene copolymers. *Proceedings of Universities. Applied Chemistry and Biotechnology.* 2025;15(3):412-422. (In Russian). DOI: 10.21285/achb.995. EDN: ARFICK.

ВВЕДЕНИЕ

Научно-технический прогресс приводит к постоянному повышению требований к качеству горюче-смазочных материалов, в том числе дизельного топлива. Так, согласно ГОСТ 32511-2013¹, действующему на территории Российской Федерации, для дизельного топлива нормируют более 20 показателей, в частности цетановое число, кинематическую вязкость, температуру вспышки в закрытом тигле, массовую долю серы и т.д. Для России одними из важнейших эксплуатационных характеристик горюче-смазочных материалов являются низкотемпературные свойства. Это связано с тем, что большая часть территорий нашей страны находится в зонах умеренного, арктического и субарктического климата, где в зимний период среднесуточные температуры могут составлять до минус 40 °C, а максимально достигнутые температуры опускаются вплоть до минус 68 °C (например, в г. Верхоянске, Якутия).

Сырьевыми ресурсами для производства товарных дизельных топлив на нефтеперерабатывающих предприятиях Российской Федерации являются прямогонные дизельные топлива, а также дизельные топлива ряда вторичных процессов, типичные показатели качества которых в сравнении со стандартными требованиями ГОСТ 32511-2013 представлены в табл. 1. В соответствии с низкотемпературным свойством, таким как предельная температура фильтруемости (ПТФ), дизельные топлива подразделяют на сорта и классы, каждый из которых можно использовать только в определенных климатических условиях (табл. 2). Самыми востребованными дизельными топливами на рынке, производящимися в России в профиците, являются топлива Евро летнее сорта С и зимнее класса 2, а наиболее дефицитным дизельное топливо арктическое класса 4, выработка которого на нефтеперерабатывающих заводах Российской Федерации не превышает 1,0-2,5% от общего объема дизельного топлива² [1].

¹ГОСТ 32511-2013. Топливо дизельное ЕВРО. Технические условия. М.: Стандартинформ, 2014. 20 с.

 $^{^{2}}$ Карташев Ю. Катализатор для Севера // Коммерсанть. 2021. 15 декабря. Режим доступа: https://www.kommersant.ru/doc/5128918 (дата обращения: 10.09.2025).

Таблица 1. Показатели качества дизельного топлива нефтеперерабатывающего производства АО «Ангарская нефтехимическая компания»

Table 1. Diesel fuel quality indicators of the Angarsk Petrochemical Company Oil Refinery

Наименование	Вид Д	дизеvрного топуі	ГОСТ 32511-2013		
показателя	Прямогонное (ЭЛОУ+АВТ-6)	Прямогонное (ГК-3)	Вторичное (21-10 3M)	Сорт С	Класс 2
Плотность при 15 °C, кг/м3	852	855	841	820,0-845,0	800,0-840,0
Полициклические ароматические углеводороды, % масс.	7,1	-	9,4	Не более 8,0	Не более 8,0
Содержание серы, мг/кг	2716	2816	7444	Не более 10,0	Не более 10,0
Температура вспышки в закрытом тигле, °C	74	79	63	Выше 55	Выше 40
Кинематическая вязкость при 40 °C, мм2/с	3,18	3,62	1,69	2,0-4,5	800,0-840,0
Фракционный состав, % об.:					
– при температуре 250 °C	30	26	62	Менее 65	Не более 10
– при температуре 350 °C	100	97	100	Не менее 85	Не менее 95
Температура перегонки 95 % об., °C	341	350	305	Не выше 360	-
Смазывающая способность по скорректированному диаметру пятна износа при 60 °C, мкм	351	330	302	Не более 460	Не более 460
ПТФ, °С	-14	-11	-30	Не выше -5	Не выше -32

Таблица 2. Требования к летнему (сорт A, B, C, D), межсезонному (E, F), зимнему (классы 0, 1, 2, 3) и арктическому (класс 4) дизельному топливам

Table 2. Requirements for summer (grades A, B, C, D), interseasonal (E, F), winter (classes 0, 1, 2, 3) and arctic (class 4) diesel fuels

Наиманования паказаталя	Сорт дизельного топлива						
Наименование показателя	A	В	С	D	E	F	
ПТФ, °С, не выше	5	0	-5	-10	-15	-20	
	Класс дизельного топлива						
	0	1		2	3	4	
ПТФ, °С, не выше	-20	-26		-32	-38	-44	
<i>Т</i> _п , °С, не выше	-10	-16		-22	-28	-34	

Необходимые экологические характеристики (массовая доля полициклических ароматических углеводородов и серы) обеспечивают при гидроочистке смесей прямогонного и вторичного дизельного топлива. При этом необходимо отметить, что при минимизации содержания сернистых соединений в дизельном топливе резко ухудшается показатель смазывающей способности (по скорректированному диаметру пятна износа при 60 °C). Для обеспечения этого показателя требуется ввод в дизельное топливо специальной противоизносной присадки.

Ряд эксплуатационных характеристик, таких как плотность, температура вспышки, фракционный состав и вязкость, обеспечивают за счет изменения состава смесевого сырья, а также оптимизации работы блока стабилизации установок гидроочистки дизельного топлива.

Значительно сложнее обстоит дело с обеспечением требуемых низкотемпературных характеристик топлива. Низкотемпературные характеристики дизельных топлив определяются в первую очередь их химическим составом и зависящим от него фракционным составом. Для при-

ведения этих показателей к нормативным значениям применяют различные методы.

Самым простым решением этой задачи является «облегчение» фракционного состава дизельного топлива, то есть отбор более низкокипящих углеводородов. При стандартном фракционном составе (180-360 °C) температура застывания (T_3) дизельного топлива составляет порядка минус 11-14 °C. При снижении температуры конца кипения дизельной фракции до 300-320 °C T_3 дизельного топлива снижается до минус 35 °C, а при отборе фракции с температурой конца кипения 280 °C T_3 топлива составляет минус 45 °C. При этом снижение температуры конца кипения дизельного топлива приводит к уменьшению объема этой фракции с 42 до 22,4% масс. в пересчете на исходную нефть [2]. Это неизбежно влечет за собой нежелательное изменение соотношения нефтепродуктов в корзине нефтеперерабатывающего завода, а также снижение экономической эффективности деятельности данного завода.

Известно также, что низкотемпературные свойства дизельных топлив существенно ухудшаются при повы-

шении содержания в них высших парафинов нормального строения: чем больше н-парафинов, тем выше Т₃. В связи с этим н-парафины обычно удаляют посредством процессов депарафинизации (каталитическая, селективная и др.) [3]. Наиболее активными катализаторами депарафинизации являются синтетические высокомолекулярные цеолиты, модифицированные редкоземельными элементами [4]. В процессе каталитической депарафинизации нефтяных фракций происходит крекинг н-парафинов, в результате чего образуются легкие предельные углеводороды, преимущественно изостроения, характеризующиеся более низкими значениями $T_{\scriptscriptstyle 3}$ и $\Pi T \Phi$. Недостатком данной технологии также является снижение выхода целевой фракции дизельного топлива за счет образования легких газообразных углеводородов и углеводородов бензиновой группы.

Более предпочтительной является технология каталитической изо-депарафинизации [5], так как она позволяет избежать тех трудностей, о которых сказано выше: при минимальном крекинге углеводородов и высоком выходе дизельного топлива она позволяет получить из длинноцепочечных *н*-парафинов изомерные молекулы, а за счет этого и необходимые низкотемпературные свойства дизельного топлива. Однако это процесс влечет за собой высокие затраты из-за использования дорогостоящих катализаторов, содержащих драгметаллы, и специфического сложного технологического оборудования (реакторы, компрессоры, печи), что увеличивает себестоимость продукции.

Оптимальным и потому широко распространенным методом корректировки низкотемпературных показателей дизельного топлива является использование депрессорных и депрессорно-диспергирующих присадок [6, 7]. Они могут быть произведены на основе как низкомолекулярных, так и высокомолекулярных соединений. Наибольшее распространение в настоящее время получили присадки полимерного типа.

Известно большое количество высокомолекулярных соединений, обладающих депрессорной активностью по отношению к нефтепродуктам, в том числе и к дизельному топливу [8, 9], при этом их значительная часть представляет собой полимеры на основе этилена, его гомологов, винилацетата, эфиров акриловой, метакриловой, фумаровой кислот, малеинового ангидрида и т.д. [10–14].

Основная часть промышленно производимых депрессоров для дизельного топлива – это сополимеры этилена с винилацетатом [15, 16]. К данной группе относят, например, такие коммерческие присадки, как Dodiflow 4971, 5416, 5817, 7118, Keroflux 3501, 5696 и др.

Наибольшая доля потребления депрессорно-диспергирующих и депрессорных присадок приходится на нефтеперерабатывающие заводы ПАО «НК "Роснефть"», ПАО «Газпром» и ПАО «Лукойл». Суммарный рынок данных присадок к топливам (включая вакуумный газойль и мазут) в России достиг в 2021 г. порядка 23 тыс. т или около 18 млрд руб. ежегодно [17].

Таким образом, разработка новых типов отечественных депрессорных присадок к дизельному топливу является одной из ключевых и актуальнейших задач, стоящих перед нефтеперерабатывающим и нефтехимическим комплексами.

Чаще всего применяемые на нефтеперерабатывающих заводах присадки, синтезируемые на основе сополимеров этилена и винилацетата, требуют сложной технологии производства: они получаются посредством радикальной сополимеризации этилена с винилацетатом при высоком давлении (от 40 до 200 МПа) и температурах порядка 180–250 °C [11, 18].

Имеется ряд научных публикаций, рассматривающих в качестве депрессорной присадки к топливам крупнотоннажный отход производства полиэтилена высокого давления – низкомолекулярный полиэтилен. Так, авторами работы [19] доказана эффективность его действия на T_3 маловязкого судового топлива с содержанием утяжеленных среднедистиллятных фракций. Также показано, что эффективность действия депрессорных присадок на основе сополимеров этилена и винилацетата и низкомолекулярного полиэтилена возрастает при включении в присадку ароматических углеводородов [20].

Цель представленного исследования заключалась в проведении синтеза и изучении депрессорных свойств присадок к дизельному топливу, полученных на основе низкомолекулярного полиэтилена и стирола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных компонентов для синтеза присадок использовали товарные и побочные продукты АО «Ангарский завод полимеров»:

- низкомолекулярный полиэтилен с *Т*_п 15-45 °C;
- стирол-ректификат с чистотой 99,8% масс. ($T_{\text{кип}}$ = 145 °C, ρ = 0,909 г/см³).

Низкомолекулярный полиэтилен представляет собой крупнотоннажный отход производства полиэтилена низкой плотности, который образуется в условиях радикально инициирования. По данным спектроскопии ядерного магнитного резонанса (ЯМР) ¹³С, молекула низкомолекулярного полиэтилена включает в среднем от 15 до 18 этиленовых остатков и характеризуется молекулярной массой порядка 450–530 Да.

Радикальную сополимеризацию стирола и низкомолекулярного полиэтилена проводили в среде ароматического растворителя (толуола или бензола) при температуре 80 °C в течение 2 ч. В качестве инициатора использовали перекись бензоила в количестве 1% от массы мономеров. По окончании сополимеризации реакционную массу разбавляли изопропанолом, выпавший осадок полимера отфильтровывали на лабораторных фильтрах Шотта S3. Сополимеры очищали переосаждением из изопропанола. Переосажденные сополимеры высушивали в вакуумной сушильном шкафу до постоянной массы.

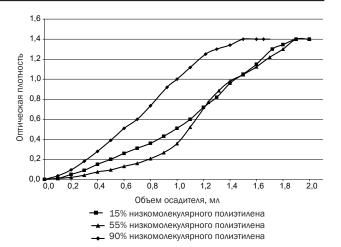
Факт протекания сополимеризации подтверждали данными турбидиметрического титрования. Турбидиметрический анализ проводили при температуре 25 °C с использованием системы толуол – изопропанол. Начальная концентрация растворов сополимеров составляла 0,96 г/100 мл. Оптическую плотность растворов измеряли на длине волны 725 нм с помощью спектрофотометра ПЭ-5400 В (ООО «Экросхим», Россия).

Состав сополимеров и относительное содержание в них различных структурных звеньев оценивали посредством данных, полученных методами элементного анализа, инфракрасной (ИК) спектроскопии и спектроскопии ЯМР ¹³С.

Элементный анализ сополимеров проводили на газоанализаторе Thermo Finnigan Flash EA 1112 Series (Thermo Finnigan, Италия). ИК-спектры сополимеров регистрировали на спектрофотометрах Varian 3100 FT-IR (Varian, США), Specord IR-75 (Carl Zeiss, Германия) и Bruker IFS-25 (Bruker, Германия) в таблетках КВг и в растворе. Также ИК-спектры получали на спектрометре ФСМ 2201 (АО «Лабораторное оборудование и приборы», Россия) с преобразованием Фурье, спектры снимали в растворе толуола.

Для регистрации спектров ЯМР ¹³С сополимеров был использован спектрометр VXR-500S (Varian, США) с рабочей частотой 125,7 МГц с шумовой развязкой от протонов и шириной спектра 30 Гц после 5000 прохождений. Шумовая развязка выключалась во время релаксационной задержки, которая составляла 2,5 с, ширина импульса – 90°, параметр уширения линий при экспоненциальном умножении – 10 Гц. Для регистрации спектра ЯМР ¹³С использовали раствор сополимера в CDCI₃ с трис-ацетилацетонатом хрома в качестве релаксанта (0,02 моль/л). Спектры регистрировали при температуре 25 °C. Количественные расчеты по спектрам ЯМР ¹³С проводили согласно методике, описанной в работе [21].

При выполнении работы использовали дизельные топлива, полученные на промышленной площадке AO «Ангарская нефтехимическая компания». Низкотемпературные свойства дизельных топлив с разработанными присадками оценивали по двум показателям: T_3 и $\Pi T \Phi$.


Определение T_3 и $\Pi T\Phi$ топлив проводили по методикам, описанным в источниках^{3,4}. Относительную вязкость растворов сополимеров определяли по стандартной методике [22]. Испытания проводились с помощью вискозиметра Уббелоде при 20 °C для 1%-х растворов сополимеров, растворенных в толуоле.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

С целью получения депрессорной присадки к дизельному топливу синтезированы сополимеры стирола и низкомолекулярного полиэтилена с различным содержанием звеньев стирола в макромолекулярной цепи. В зависимости от состава мономерной смеси сополимеры являются твердыми или гелеобразными веществами белого цвета, хорошо растворимыми в индивидуальных или смесевых углеводородных растворителях: гексане, гептане, бензоле, толуоле, дизельной фракции.

Факт протекания сополимеризации подтверждали данными турбидиметрического титрования. С учетом склонности стирола к гомополимеризации и проведения процесса в присутствии радикального инициатора нельзя исключать возможность получения гомополимера стирола (полистирола) в ходе процесса. Мономодальный вид большинства кривых турбидиметрического титрования (рисунок) свидетельствует о получении в исследованных системах сополимеров, а не смеси двух гомополимеров.

Полученные продукты идентифицировали по данным элементного анализа (содержание С, Н), строение сопо-

Кривые турбидиметрического титрования сополимеров стирола и низкомолекулярного полиэтилена

Turbidimetric titration curves of styrene and low molecular weight polyethylene copolymers

лимеров устанавливали на основании данных ИК-спектроскопии и спектроскопии ЯМР 13 С. В ИК-спектрах наблюдаются полосы поглощения в области 2940–2915 и 2870–2845 см $^{-1}$, соответствующие асимметричным и симметричным валентным колебаниям группы – CH $_2$. Также в спектре имеются колебания в областях, характерных для ароматического кольца: полосы поглощения в областях 3030 и 1600-1400 см $^{-1}$ могут быть отнесены к валентным колебаниям групп СН в ароматическом кольце. Отсутствие полос поглощения в области 1645-1640 см $^{-1}$ свидетельствует о протекании реакции полимеризации по винильной группе в стироле и двойным связям в низкомолекулярном полиэтилене.

Отнесение сигналов в спектрах ЯМР ¹³С сополимеров стирол – низкомолекулярный полиэтилен позволило охарактеризовать состав сополимеров (табл. 3) и рассчитать средние значения их молекулярных масс, которые составили в среднем до 635–740 Да.

Таким образом, в результате сополимеризации стирола с низкомолекулярным полиэтиленом впервые синтезированы привитые бинарные сополимеры, содержащие звенья стирола преимущественно в боковых цепях. Исходя из анализа спектроскопических данных, структуру сополимеров стирола и низкомолекулярного полиэтилена можно представить следующей формулой:

где (m + n) = 15-18.

Полученные результаты соотносятся с данными элементного анализа (массовая доля углерода), которые использованы для расчета состава сополимеров (табл. 4).

416

³ГОСТ 22254-92 Топливо дизельное. Метод определения предельной температуры фильтруемости на холодном фильтре. М.: Комитет по стандартизации и метрологии СССР, 1992. 16 с.

⁴ГОСТ 5066-2018. Топлива моторные. Методы определения температур помутнения, начала кристал-лизации и замерзания. М.: Стандартинформ, 2019. 11 с.

Таблица 3. Интегральная интенсивность сигналов в спектре (I) и мольная доля атомов углерода (q) в макромолекуле сополимера **Table 3.** Integral intensity of signals in the spectrum (I) and molar fraction of carbon atoms (q) in the copolymer macromolecule

Структурный фрагмент	I	q	Диапазон химических сдвигов ¹³ С, ppm; отнесение сигналов
C_{ap}	19,63	0,030	148–140; четвертичные атомы углерода ароматических колец (C_1)
CH_{ap}	98,13	0,148	130-126; атомы углерода ароматических колец (C ₂ , C ₃ , C ₄ , C ₅ , C ₆)
СН	19,32	0,029	48–42; атомы углерода метиновых групп, находящихся в α -положении к ароматическому кольцу стирола (C_7)
CH_2	134,41	0,202	42–33; атомы углерода метиленовых групп, находящихся в β -положении к ароматическому кольцу стирола (C_8) (метиленовые группы этилена и стирола)
CH_2	242,66	0,451	33-25; атомы углерода полиметиленовых фрагментов
CH ₃ -изо	99,53	0,065	25–17; атомы углерода метильных групп, связанных с метиновыми группам
СН ₃ -т	49,63	0,075	17–7; атомы углерода терминальных метильных групп, связанных с метиленовыми группами

$$\begin{array}{c|c}
8 & 7 \\
-\text{CH}_2 - \text{CH} - \\
6 & 1 \\
5 & 3
\end{array}$$

Таблица 4. Общие закономерности сополимеризации низкомолекулярного полиэтилена со стиролом

 Table 4. General patterns of copolymerization of low molecular weight polyethylene with styrene

Номер образца	Состав исходной смеси, % мол.		Содержание	Состав сополимер % мол.	oa*,	Выход,	Относительная		
	Низкомолекулярный полиэтилен	Стирол	углерода, % масс.	Низкомолекулярный полиэтилен	Стирол	%	вязкость		
	Сополимеризация в растворе толуола								
1	95	5	87,13	92,70*/ 92,86**	7,30/ 7,14	54,7	1,04		
2	75	25	87,16	92,70*/ 92,75**	7,45/ 7,25	48,2	1,07		
3	50	50	87,52	90,29*	9,71	24,4	1,09		
4	25	75	87,65	89,45*	10,55	17,0	1,12		
5	5	95	87,80	88,40*	11,60	2,17	1,15		
	Сополимеризация в растворе бензола								
1-1	90	10	87,33	91,50	8,50	55,75	1,21		
1-2	55	45	87,69	89,15	10,85	24,00	1,17		
1-3	45	55	87,96	87,29	12,71	36,00	1,08		
1-4	35	65	88,32	84,45	15,55	33,50	1,09		
1-5	15	85	89,35	74,40	25,60	36,00	1,12		

Примечание. * - по данным элементного анализа; ** - по данным спектроскопии ЯМР ¹³С.

Содержание стирола в полученных сополимерах возрастает с повышением его доли в исходной мономерной смеси, при этом при проведении сополимеризации в бензоле содержание стирола выше, чем в толуоле. Выход сополимеров (см. табл. 4), полученных в растворе толуола, увеличивается с повышением содержания в исходной смеси низкомолекулярного полиэтилена, что говорит о меньшей реакционной способности стирола.

Сополимеры характеризуются низкими значениями относительной вязкости (см. табл. 4) и, следовательно, невысокими значениями молекулярной массы, что подтверждается данными спектроскопии ЯМР ¹³С. Как показывает анализ литературных данных [23], депрессорные свойства традиционных полимерных присадок зависят в числе прочего от значений их молекулярных масс: присадки с наименьшей молекулярной массой обладают максимальным депрессорным действием.

Для оценки степени воздействия сополимеров стирол – низкомолекулярный полиэтилен на T_3 , $\Pi T \Phi$ и температуру помутнения (T_n) образцов прямогонного летнего и зимнего дизельного топлива был проведен ряд испытаний. Сополимеры с различным соотношением

стирола и низкомолекулярного полиэтилена в макромолекуле растворяли в прямогонных дизельных топливах при комнатной температуре (табл. 5). Концентрацию сополимеров в дизельном топливе варьировали от 0,05 до 1,00% от массы топлива (табл. 6), что соответствует стандартной концентрации коммерческих присадок к дизельному топливу, используемых на нефтеперерабатывающих заводах. Результаты оценки низкотемпературных свойств дизельного топлива с сополимерами стирол – низкомолекулярный полиэтилен, полученными в толуоле, приведены в табл. 5.

Анализ полученных данных позволяет говорить об улучшении низкотемпературных характеристик дизельного топлива с присадкой: при ее использовании в концентрации 0,5% масс. на дизельном топливе зафиксировано снижение T_3 летнего дизельного топлива на 30,5 °C (до минус 33,7 °C). При этом $\Pi T\Phi$ дизельного топлива составила минус 15,3 °C, то есть снизилась на 20,7 °C.

Для образца зимнего дизельного топлива максимальная депрессия T_3 составила 17,6 °C, которая соответствовала T_3 дизельного топлива минус 42,4 °C. Максимальная депрессия $\Pi T \Phi$ составили 17,4 °C.

Таким образом, можно сделать вывод, что присадка на основе сополимеров стирол – низкомолекулярный

Таблица 5. Низкотемпературные характеристики летнего и зимнего дизельного топлива в присутствии сополимеров стирола и низкомолекулярного полиэтилена (концентрация присадки – 0,5% масс.)

Table 5. Low-temperature characteristics of summer and winter diesel fuel in the presence of copolymers of styrene and low molecular weight polyethylene (additive concentration 0.5% by weight)

Наименование образца	ПТФ, °С	ΔΠΤΦ, °C	T₃, °C	ΔT ₃ , °C	T _n , °C	ΔT _n , °C
Дизельное топливо летнее	5,4	_	-3,2	-	8,6	_
Низкомолекулярный полиэтилен 95% масс.	-0,1	5,5	-11,3	8,1	8,0	0,6
Низкомолекулярный полиэтилен 75% масс.	-12,9	18,3	-29,7	26,5	7,0	1,6
Низкомолекулярный полиэтилен 50% масс.	-15,3	20,7	-32,5	29,3	8,2	1,2
Низкомолекулярный полиэтилен 25% масс.	-15,3	20,7	-33,7	30,5	7,5	1,1
Дизельное топливо зимнее	-14,4	_	-24,8	-	-8,7	_
Низкомолекулярный полиэтилен 95% масс.	-24,8	10,4	-35,2	10,4	-10,0	1,3
Низкомолекулярный полиэтилен 75% масс.	-26,3	11,9	-39,4	14,6	-10,5	1,8
Низкомолекулярный полиэтилен 50% масс.	-28,1	13,7	-42,4	17,6	-10,5	1,8
Низкомолекулярный полиэтилен 25% масс.	-31,8	17,4	-41,3	16,5	-11,0	2,3

Таблица 6. Низкотемпературные характеристики летнего дизельного топлива в присутствии сополимеров стирола и низкомолекулярного полиэтилена (содержание последнего – 25% масс.)

Table 6. Low-temperature characteristics of summer diesel fuel in the presence of copolymers of styrene and low molecular weight polyethylene (NMPE content 25% by weight)

Наименование образца	ПТФ, °С	ΔΠΤΦ, °C	T₃, °C	ΔT ₃ , °C	T _π , °C	ΔT _n , °C
Дизельное топливо летнее	6,1	-	-3,4	-	7,8	-
0,1% масс.	2,1	4,0	-10,4	7,0	7,2	0,6
0,5% масс.	-11,0	15,1	-30,0	26,7	7,7	0,1
1,0% масс.	-11,3	15,4	-29,0	25,6	6,4	1,4

полиэтилен обладает приемистостью как к летним, так и к зимним дизельным топливам. Депрессорный эффект сополимеров как для зимних, так и для летних дизельных топлив зависит от их строения:

- для летних топлив максимальная депрессия достигается при использовании сополимера с содержанием низкомолекулярного полиэтилена 25% масс;
- для зимних дизельных топлив максимальным депрессорным эффектом обладают сополимеры с содержанием низкомолекулярного полиэтилена 50% масс.

Значения \underline{T}_{a} для базовых летних и зимних дизельных топлив в присутствии сополимеров стирола и низкомолекулярного полиэтилена практически не изменяются.

Проведен ряд экспериментов с целью подбора оптимальной концентрации присадки. Были изучены низкотемпературные свойства образцов дизельного топлива с содержанием низкомолекулярного полиэтилена в сополимере, составляющем 25% масс. (см. табл. 6), который показал лучшие результаты при испытаниях летних и зимних дизельных топлив по изменению T_3 , $\Pi T \Phi$ и T_n (см. табл. 5.)

Экспериментальные данные показывают, что присадка к дизельному топливу сополимера стирол – низкомолекулярный полиэтилен в количестве 0,1% масс. позволяет снизить $\Pi T\Phi$ на 4 °C, а T_3 на 10,4 °C. Увеличение концентрации депрессора в дизельном топливе более 0,5% масс. нецелесообразно, поскольку приводит к обратному эффекту – увеличению T_3 .

ЗАКЛЮЧЕНИЕ

Таким образом, в ходе проведенного исследования разработана новая депрессорная присадка для дизельного топлива на основе впервые полученных бинарных сополимеров низкомолекулярного полиэтилена со стиролом. Установлены основные закономерности протекания реакций радикальной сополимеризации в указанных системах в среде ароматических растворителей и доказано, что синтезированные продукты представляют собой привитые сополимеры, содержащие звенья стирола преимущественно в боковых цепях.

Произведена оценка низкотемпературных показателей летних и зимних дизельных топлив с новыми депрессорными присадками. Установлено, что сополимеры стирола с низкомолекулярным полиэтиленом, добавленные в дизельное топливо в количестве от 0,1 до 1,0% масс., позволяют снизить их T_3 до минус 42 °C и обеспечить депрессию $\Pi T \Phi$ до 21 °C.

Использование сополимеров стирола в качестве депрессорной присадки к летним и зимним прямогонным дизельным топливам в количестве 0,5% масс. существенно снижает T_3 топлива, что позволит без изменения фракционного состава дизельного топлива на базе летнего дизельного топлива сорта A получать межсезонные дизельные топлива сорта D и E, а на базе зимнего дизельного топлива сорта D возможно производство зимних дизельных топлив класса 0, 1, 2 (при подборе базового дизельного топлива с необходимой T_n) с более высокой добавленной стоимостью.

список источников

- **1.** Синюта В.Р., Орловская Н.Ф. Производство арктических дизельных топлив // Нефтепереработка и нефтехимия. 2017. N 9. C. 16–18. EDN: ZTMVLV.
- **2.** Митусова Т.Н., Хавкин В.А., Гуляева Л.А., Калинина М.В., Виноградова Н.Я. Современное состояние производства низкозастывающих дизельных топлив на заводах России // Мир нефтепродуктов. Вестник нефтяных компаний. 2012. N 2. C. 6–8. EDN: OYPKPB.
- **3.** Камешков А.В., Гайле А.А. Получение дизельных топлив с улучшенными низкотемпературными свойствами (обзор) // Известия Санкт-Петербургского государственного технологического института (технического университета). 2015. N 29. C. 49–60. EDN: UDOGPB.
- **4.** Боженков Г.В., Медведев Д.В., Рудякова Е.В., Губанов Н.Д. Каталитическая депарафинизация средних дистиллятов // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. N 2. C. 349–359. DOI: 10.21285/2227-2925-2020-10-2-349-359. EDN: VQHOWV.
- **5.** Кондрашев Д.О., Клейменов А.В., Гуляева Л.А., Хавкин В.А., Красильникова Л.А., Груданова А.И. [и др.]. Исследование эффективности процесса изодепарафинизации дизельного топлива с использованием цеолитсодержащего никель-молибденового катализатора // Катализ в промышленности. 2016. N 6. C. 14–22. EDN: XQXGIX.
- **6.** Капустин В.М. Нефтяные и альтернативные топлива с присадками и добавками. М.: КолосС, 2008. 230 с.
- **7.** Тертерян Р.А. Депрессорные присадки к нефтям, топливам и маслам. М.: Химия, 1990. 236 с.
- **8.** Кулиев А.М. Химия и технология присадок к маслам и топливам. Л.: Химия, 1985. 312 с.
 - 9. Данилов А.М. Отечественные присадки к дизельным

- топливам // Мир нефтепродуктов. Вестник нефтяных компаний. 2010. N 1. C. 9-13. EDN: KZVXEV.
- **10.** Пат. № 2009172, Российская Федерация, C10L1/04, C10L1/18. Нефтяное топливо / Т.Ф. Овчинникова, В.Н. Лозинский, И.Я. Пережигина, Т.Н. Митусова, П.С. Дейнеко, Ф.В. Октябрьский [и др.]. Заявл. 10.02.1992; опубл. 15.03.1994.
- **11. Т**ертерян Р.А., Иванов В.И., Лившиц С.Д., Краснянская Г.Г. Депрессорная присадка к мазутам // Химия и технология топлив и масел. 1981. N 11. C. 42–44.
- **12.** Иванов В.И., Храпов В.С., Душечкин А.П., Шапкина Л.Н. Сополимеры этилена с алкилметакрилатами как депрессорные присадки к дизельному топливу // Химия и технология топлив и масел. 1981. N 11. C. 41–42.
- **13.** Létoffé J.M., Claudy P., Vassilakis D., Damin B. Antagonism between cloud point and cold filter plugging point depressants in a diesel fuel // Fuel. 1995. Vol. 74, no. 12. P. 1830–1833. DOI: 10.1016/0016-2361(95)80015-A.
- **14.** Xu G., Xue Y., Zhao Z., Lian X., Lin H., Han S. Influence of poly (methacrylate-co-maleic anhydride) pour point depressant with various pendants on low-temperature flowability of diesel fuel // Fuel. 2018. Vol. 216. P. 898–907. DOI: 10.1016/j.fuel.2017.06.126.
- **15.** Башкатова С.Т. Присадки к дизельным топливам. М.: Химия, 1994. 250 с.
- **16.** Яковлев Н.С., Агаев С.Г. Влияние физико-химических свойств депрессорных присадок на их эффективность в дизельных топливах // Известия вузов. Прикладная химия и биотехнология. 2022. Т. 12. N 4. C. 612–619. DOI: 10.21285/2227-2925-2022-12-4-612-619. EDN: YBJNUE.
- **17.** Савеленко В.Д., Ершов М.А., Махова У.А., Махмудова А.Э., Подлеснова, Низовцев А.В. [и др.]. Анализ

- рынка топливных присадок в России и перспективы импортозамещения // Нефтегазохимия. 2023. N 2. C. 12–19. DOI: 10.24412/2310-8266-2023-2-12-19. EDN: ISUWWF.
- **18.** Иванов В.И., Краснянская Г.Г., Октябрьский В.Ф., Ермакова Н.В. Получение депрессорной присадки к дизельному топливу сополимеризацией этилена с винилацетатом // Химия и технология топлив и масел. 1984. N 10. C. 12-14.
- **19.** Артемьева Ж.Н., Дьячкова С.Г., Кузора И.Е., Забродина С.В. Утилизация отходов нефтеперерабатывающих и нефтехимических производств новый экологичный подход к товарным продуктам // Экология и промышленность России. 2020. Т. 24. N 12. C. 23–27. DOI: 10.18412/1816-0395-2020-12-23-27. EDN: UICMKV.
- **20.** Пат. № 2137813, Российская Федерация, C10L1/18. Депрессорная присадка для нефти и нефте-

- продуктов / Б.Г. Соколов, А.В. де Векки, Ю.П. Кобзев, Н.А. Митин, А.И. Терехов, В.Ф. Большаков [и др.]. Заявл. 06.01.1998; опубл. 20.09.1999.
- **21.** Калабин Г.А., Каницкая Л.В., Кушнарев Д.Ф. Количественная спектроскопия ЯМР природного органического сырья и продуктов его переработки. М.: Химия, 2000. 407 с.
- **22.** Берлин А.А. Об определении характеристической вязкости растворов полимеров // Высокомолекулярные соединения. 1966. Т. 8. N 8. C. 1336–1341.
- **23.** Ivanova L.V., Makarov I.A., Primerova O.V., Burov E.A., Sorokina A.S., Koshelev V.N. Comparative study of the depressant-dispersant additives efficiency in diesel fuel // Известия высших учебных заведений. Серия Химия и химическая технология. 2022. Т. 65. N 3. C. 60–66. DOI: 10.6060/ivkkt.20226503.6446. EDN: ORMIIF.

REFERENCES

- **1.** Sinyuta V.R., Orlovskaya N.F. Production of arctic diesel fuels. *Neftepererabotka i neftekhimiya*. 2017;9:16-18. (In Russian). EDN: ZTMVLV.
- **2.** Mitusova T.N., Khavkin V.A., Gulyaeva L.A., Kalinina M.V., Vinogradova N.Ya. Low-freezing diesel fuels roduction. *Mir nefteproduktov. Vestnik neftyanykh kompanii.* 2012;2:6-8. (In Russian). EDN: OYPKPB.
- **3.** Kameshkov A.V., Gaile A.A. Production of diesel fuels with improved low temperature properties (review). *Bulletin of the Saint Petersburg State Institute of Technology (Technical University)*. 2015;29:49-60. (In Russian). EDN: UDOGPB.
- **4.** Bozhenkov G.V., Medvedev D.V., Rudyakova E.V., Gubanov N.D. Catalytic deparaffinization of middle distillates. *Proceedings of Universities*. *Applied Chemistry and Biotechnology*. 2020;10(2):349-359. (In Russian). DOI: 10.21285/2227-2925-2020-10-2-349-359. EDN: VQHOWV.
- **5.** Kondrashev D.O., Kleimenov A.V., Gulyaeva L.A., Khavkin V.A., Krasil'nikova L.A., Grudanova A.I., et al. Studies of the efficiency of diesel isodeparaffinization over a zeolite-containing nickel-molybdenum catalyst. *Catalysis in Industry*. 2016;6:14-22. (In Russian). EDN: XQXGIX.
- **6.** Kapustin V.M. *Oil and alternative fuels with additives.* Moscow: KolosS; 2008, 232 p. (In Russian).
- **7.** Terteryan R.A. Depressant additives for oils, fuels, and lubricants. Moscow: Khimiya; 1990, 238 p. (In Russian).
- **8.** Kuliyev A.M. Chemistry and technology of additives for oils and fuels. Leningrad: Khimiya; 1985, 312 p. (In Russian).
- **9.** Danilov A.M. Domestic additives to diesel fuels. *Mir nefteproduktov. Vestnik neftyanykh kompanii.* 2010;1:9-13. (In Russian). EDN: KZVXEV.
- **10.** Ovchinnikova T.F., Lozinskij V.N., Perezhigina I.Ja., Mitusova T.N., Dajenko P.S., Oktjabr'skij F.V., et al. *Petroleum Fuel*. Patent RF, no. 2009172; 1994. (In Russian).
- **11.** Terteryan R.A., Ivanov V.I., Livshits S.D., Krasyanskaya G.G. Depressant additive for fuel oils. *Chemistry and Technology of Fuels and Oils*. 1981;11:42-44. (In Russian).
- **12.** Ivanov V.I., Kharapov V.S., Dushechkin A.P., Shapkina L.N. Ethylene copolymers with alkyl methacrylates as depressant additives for diesel fuel. *Chemistry and Technology of Fuels and Oils*. 1981;11:41-42. (In Russian).
- **13.** Létoffé J.M., Claudy P., Vassilakis D., Damin B. Antagonism between cloud point and cold filter plugging point depressants in a diesel fuel. *Fuel.* 1995;74(12):1830-1833. DOI: 10.1016/0016-2361(95)80015-A.

- **14.** Xu G., Xue Y., Zhao Z., Lian X., Lin H., Han S. Influence of poly (methacrylate-co-maleic anhydride) pour point depressant with various pendants on low-temperature flowability of diesel fuel. *Fuel.* 2018;216:898-907. DOI: 10.1016/j.fuel.2017.06.126.
- **15.** Bashkatova S.T. *Additives for diesel fuels*. Moscow: Khimiya; 1994, p. 256. (In Russian).
- **16.** Yakovlev N.S., Agaev S.G. Influence of physicochemical properties of depressor additives on their performance in diesel fuels. *Proceedings of Universities. Applied Chemistry and Biotechnology.* 2022;12(4):612-619. (In Russian). DOI: 10.21285/2227-2925-2022-12-4-612-619. EDN: YBJNUE.
- **17.** Savelenko V.D., Ershov M.A., Makhova U.A., Makhmudova A.E., Podlesnova E.V., Nizovtsev A.V., et al. Analysis of the fuel additives market in russia and prospects for import substitution. *Oil* & *Gas Chemistry*. 2023;2:12-19. (In Russian). DOI: 10.24412/2310-8266-2023-2-12-19. EDN: ISUWWF.
- **18.** Ivanov V.I., Krasyanskaya G.G., Oktyabrsky V.F., Ermakova N.V. Production of a depressant additive for diesel fuel by copolymerization of ethylene with vinyl acetate. *Chemistry and Technology of Fuels and Oils*. 1984;10:12-14. (In Russian).
- **19.** Artemyeva Zh.N., D'yachkova S.G., Kuzora I.E., Zabrodina S.V. Recycling of waste from oil refining and petrochemical industries a new, eco-friendly approach to commercial products. *Ecology and Industry of Russia*. 2020;24(12):23-27. (In Russian). DOI: 10.18412/1816-0395-2020-12-23-27. EDN: UICMKV.
- **20.** Sokolov B.G., de Vekkhi A.V., Kobzev J.P., Mitin N.A., Terekhov A.I., Bol'shakov V.F., et al. *Depressant for petroleum and petroleum products*. Patent RF, no. 2137813; 1999. (In Russian).
- **21.** Kalabin G.A., Kanitskaya L.V., Kushnarev D.F. Quantitative NMR spectroscopy of natural organic raw materials and their processing products. Moscow: Khimiya; 2000, 407 p. (In Russian).
- **22.** Berlin A.A. On the determination of intrinsic viscosity of polymer solutions. *Vysokomolekulyarnye soedineniya*. 1966;8(8):1336-1341. (In Russian).
- **23.** Ivanova L.V., Makarov I.A., Primerova O.V., Burov E.A., Sorokina A.S., Koshelev V.N. Comparative study of the depressant-dispersant additives efficiency in diesel fuel. *ChemChemTech.* 2022;65(3):60-66. DOI: 10.6060/ivkkt.20226503.6446. EDN: ORMIIF.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Гоненко Николай Павлович,

аспирант,

Иркутский национальный исследовательский технический университет, 664074, г. Иркутск, ул. Лермонтова, 83, Российская Федерация, Ыми коlya.gonenko@yandex.ru https://orcid.org/0009-0006-1548-429X

Раскулова Татьяна Валентиновна,

д.х.н., доцент, заведующий кафедрой, Ангарский государственный технический университет, 665835 г. Ангарск, ул. Чайковского, 60, Российская Федерация, raskulova@list.ru https://orcid.org/0000-0003-2367-8204

Каницкая Людмила Васильевна,

д.х.н., профессор, профессор, Байкальский государственный университет, 664003, г. Иркутск, ул. Ленина, 11, Российская Федерация, kanlv@mail.ru https://orcid.org/0000-0002-3028-3668

Кузора Игорь Евгеньевич,

к.т.н., доцент, Ангарский государственный технический университет, 665835 г. Ангарск, ул. Чайковского, 60, Российская Федерация, kuzoraie@anhk.rosneft.ru https://orcid.org/0000-0002-7039-2017

Коновалов Николай Петрович,

д.т.н., профессор, заведующий кафедрой, Иркутский национальный исследовательский технический университет, 664074, г. Иркутск, ул. Лермонтова, 83, Российская Федерация, knp@istu.edu https://orcid.org/0000-0001-6786-2711

INFORMATION ABOUT THE AUTHORS

Nikolai P. Gonenko,

Postgraduate Student,
Irkutsk National Research Technical University,
83, Lermontov St., Irkutsk, 664074,
Russian Federation,

⊠ kolya.gonenko@yandex.ru
https://orcid.org/0009-0006-1548-429X

Tatyana V. Raskulova,

Dr. Sci. (Chemistry), Associate Professor, Head of the Department, Angarsk State Technical University, 60, Tchaikovsky St., Angarsk, 665835, Russian Federation, raskulova@list.ru https://orcid.org/0000-0003-2367-8204

Lyudmila V. Kanitskaya,

Dr. Sci. (Chemistry), Professor, Professor, Baikal State University, 11, Lenin St., Irkutsk, 664003, Russian Federation, kanlv@mail.ru https://orcid.org/0000-0002-3028-3668

Igor E. Kuzora,

Cand. Sci. (Engineering), Associate Professor, Angarsk State Technical University, 60, Tchaikovsky St., Angarsk, 665835, Russian Federation, kuzoraie@anhk.rosneft.ru https://orcid.org/0000-0002-7039-2017

Nikolai P. Konovalov,

Dr. Sci. (Chemistry), Professor, Head of the Department, Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russian Federation, knp@istu.edu https://orcid.org/0000-0001-6786-2711

Вклад авторов

Н.П. Гоненко - проведение исследования, формальный анализ, визуализация, написание черновика рукописи. Т.В. Раскулова - разработка концепции, разработка методологии, формальный анализ, проведение исследования, научное руководство, валидация результатов, редактирование рукописи. Л.В. Каницкая – курирование данных, проведение исследования, валидация результатов, редактирование рукописи. И.Е. Кузора - курирование данных, формальный анализ, предоставление ресурсов, валидация результатов, редактирование рукописи. Н.П. Коновалов - курирование данных, валидация результатов, редактирование рукописи.

Contribution of the authors

Nikolai P. Gonenko – investigation, formal analysis, visualization, writing – original draft.

Tatyana V. Raskulova – conceptualization, methodology, formal analysis, investigation, supervision, validation, editing.

Lyudmila V. Kanitskaya – data curation, investigation, validation, editing.

Igor E. Kuzora – data curation, formal analysis, resources, validation, editing.

Nikolai P. Konovalov – data curation, validation, editing.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

Информация о статье

Поступила в редакцию 05.05.2025. Одобрена после рецензирования 15.06.2025. Принята к публикации 18.09.2025.

Conflict of interest

The authors declare no conflict of interests regarding the publication of this article.

The final manuscript has been read and approved by all the co-authors.

Information about the article

The article was submitted 05.05.2025. Approved after reviewing 15.06.2025. Accepted for publication 18.09.2025.