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Аннотация. Работа посвящена исследованию возможности применения биокомпозита на основе бактериальной 
целлюлозы и дрожжей Debaryomyces hansenii в энантиоселективном биокатализе для получения энантиомерно 
чистых вторичных спиртов. В результате тестирования трех штаммов дрожжей Debaryomyces hansenii выявлен 
штамм Д-43-1, биомасса которого в присутствии экзогенного восстановителя (изопропанола) энантиоселективно 
восстанавливает ацетофенон в S-1-фенилэтанол высокой энантиомерной чистоты (не менее 99%). Иммобили-
зацией клеток Debaryomyces hansenii Д-43-1 на гель-пленке бактериальной целлюлозы получен биокомпозит для 
исследования эффективности его использования в качестве биокатализатора для восстановления ацетофенона 
или иммобилизованного инокулята для получения биомассы дрожжей с карбонилредуктазной активностью. 
Установлено, что использование биокомпозита как биокатализатора невозможно: продукт восстановления 
ацетофенона не обнаруживается в реакционной смеси. В то же время применение биокомпозита в качестве 
иммобилизованного инокулята позволяет интенсифицировать процесс получения энзиматически активной 
биомассы дрожжей, пригодной для энантиоселективного восстановления ацетофенона в энантиомерно чистый 
S-1-фенилэтанол. Выход биомассы, достигнутый с использованием иммобилизованного инокулята в первом 
цикле ферментации, был в 3 раза больше по сравнению с планктонным инокулятом. В четырех повторных 
ферментациях в течение 15-часового культивирования стабильно достигается выход биомассы около 13 г/л, 
который почти в 2 раза превышает уровень, достигнутый за тот же промежуток времени при использовании 
планктонного посевного материала. Показано, что биомасса, полученная с использованием биокомпозита, 
может быть использована многократно. При концентрации биомассы 40 г/л (по сухому весу) выход продукта 
стабильно достигает 86–88% в течение четырех циклов трансформации и только в пятом цикле снижается до 65%.
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тивный биокатализ, ацетофенон, S-1-фенилэтанол
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Abstract. The study investigates the potential use of a biocomposite composed of bacterial cellulose and Debaryomyces 
hansenii yeast in enantioselective biocatalysis to produce enantiopure secondary alcohols. As a result of testing 
three strains of Debaryomyces hansenii yeast, it was determined that in the presence of an exogenous reducing 
agent (isopropanol), the biomass of strain D-43-1 reduces acetophenone enantioselectively to highly enantiopure 
S-1-phenylethanol (at least 99%). Cell immobilization of the Debaryomyces hansenii strain D-43-1 on a bacterial cellulose 
gel film yielded a biocomposite for the study of its effectiveness as a biocatalyst for acetophenone reduction or as an 
immobilized inoculum for the production of yeast biomass with carbonyl reductase activity. The use of biocomposite 
as a biocatalyst was found to be impossible: the product of acetophenone reduction was not detected in the reaction 
mixture. When used as an immobilized inoculum, biocomposite intensifies the production of enzymatically active 
yeast biomass suitable for the enantioselective reduction of acetophenone to enantiopure S-1-phenylethanol. The 
biomass yield achieved in the first fermentation cycle using the immobilized inoculant is three times higher than that 
produced using the planktonic inoculum. Four repeated fermentations during a 15-hour cell culture consistently 
achieve a biomass yield of approximately 13 g/L, which is almost twice the level achieved over the same period of 
time using planktonic inoculum. Biomass obtained using the biocomposite was shown to be reusable. At a biomass 
dry weight concentration of 40 g/L, the product yield consistently reaches 86–88% during the four transformation 
cycles, decreasing to 65% only in the fifth cycle.
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S-1-phenylethanol
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ВВЕДЕНИЕ
Бактериальная целлюлоза представляет собой при-

родный полимер, пригодный для создания функцио-
нальных композиционных материалов, находящих свое 
применение в медицине, электронике и электротехнике, 
текстильной, бумажной и пищевой промышленности [1–5]. 
Биополимер синтезируется рядом грамотрицательных и 
грамположительных бактерий, среди которых наиболее 
эффективными продуцентами являются представители 
родов Komagataeibacter и Novacetimonas [2, 3]. При 
культивировании этих микроорганизмов в статических 
условиях целлюлоза образуется на границе раздела 
вода – воздух в виде гель-пленки [6]. 

Благодаря своей уникальной трехмерной структуре, 
высокой прочности, влагоудерживающей способности, 
а также совместимости с живыми организмами гель-
пленка бактериальной целлюлозы в настоящее время 
рассматривается как перспективный носитель для иммо-
билизации микроорганизмов, позволяющий получать 
биокомпозитные материалы с заданными практически 
важными функциями [7, 8]. В частности, на основе гель-
пленки бактериальной целлюлозы и клеток микроорга-

низмов могут быть созданы повязки с антимикробными 
свойствами для лечения ран [9], упаковки для пищевых 
продуктов [10], системы доставки пробиотиков [11], 
компоненты биоэлектрокаталитических устройств (био-
сенсоров, микробных топливных ячеек [12, 13], сорбенты 
для адсорбции тяжелых металлов [14], биокатализаторы 
для трансформации органических соединений [15, 16]. 

Показано, что биокомпозиты бактериальной цел-
люлозы с микроорганизмами позволяют интенсифи-
цировать биотехнологические процессы, в том числе 
биодеградацию экотоксикантов [17, 18], полимеризацию 
фенольных соединений [15], получение этанола [19], 
лимонной кислоты [20], лизина [1], астаксантина [21].

Ранее нами был разработан биокомпозит бакте-
риальной целлюлозы с галорезистентными дрожжами 
Debaryomyces hansenii Д-43-1, способными дегради-
ровать фенол [17]. Установлено, что в присутствии такого 
биокомпозита процесс деградации фенола протекает 
при более высоких концентрациях токсиканта и за 
более короткий промежуток времени по сравнению 
с планктонной дрожжевой культурой [17, 22]. Вместе 
с тем известно, что дрожжи вида D. hansenii имеют 
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большой потенциал биотехнологического и коммерче-
ского применения [23–27]. Они широко используются в 
пищевой промышленности для производства молочных 
и мясных продуктов [24, 26]. На их основе разработаны 
биосенсоры [25], создаются генно-инженерные про-
дуценты рекомбинантных белков и пептидов [27]. 
Биомасса дрожжей, полученная культивированием 
микроорганизмов на промышленных отходах, может 
служить источником кормового белка и липидов [24, 26]. 
Кроме того, дрожжи D. hansenii способны продуцировать 
практически важные ферменты, полиолы, флавоноиды, 
рибофлавин, вещества, контролирующие развитие пато-
генных микроорганизмов и др. [23, 24, 26, 27]. Все это 
делает актуальным поиск новых областей применения 
биокомпозитов бактериальной целлюлозы с дрожжами 
D. hansenii.

Одной из перспективных областей применения 
дрожжей D. hansenii является энантиоселективный биока-
тализ. Обнаружено, что клетки ряда штаммов D. hansenii 
могут быть использованы в качестве энантиоселективных 
биокатализаторов для асимметрического восстанов-
ления прохиральных карбонилсодержащих соединений 
в энантиомерно чистые вторичные спирты  [28–30], 
необходимые для синтеза хиральных биологически 
активных веществ, имеющих промышленное значение 
для фармацевтики и агрохимии [31, 32]. В том числе 
показано, что энантиоселективным восстановлением 
ацетофенона с помощью дрожжей D. hansenii может 
быть получен S-1-фенилэтанол – предшественник ряда 
фармакозначимых соединений [33, 34].

Целью настоящей работы являлось исследование 
возможности применения биокомпозита на основе 
бактериальной целлюлозы и дрожжей D. hansenii для 
интенсификации процесса получения энантиомерно 
чистого S-1-фенилэтанола. 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
В качестве объектов исследования использовались 

дрожжевые штаммы D. hansenii Y-1889 и Y-1554, полу-
ченные из Всероссийской коллекции промышленных 
микроорганизмов, а также дрожжи D. hansenii Д-43-1 и 
бактерии Komagataeibacter sucrofermentans НЦ-12 из 
коллекции культур микроорганизмов кафедры биохимии и 
технологии микробиологических производств Уфимского 
государственного технического университета (г. Уфа, 
Россия). Идентификация штамма K. sucrofermentans 
НЦ-12 осуществлена на основе анализа последова-
тельности 16S РНК в Биоресурсном центре Всерос-
сийской коллекции промышленных микроорганизмов 
Государственного научно-исследовательского института 
генетики и селекции промышленных микроорганизмов 
Национального исследовательского центра «Курчатовский 
институт» (г. Москва, Россия). Штамм D. hansenii Д-43-1 
идентифицирован на основании морфологических и 
физиолого-биохимических характеристик в соответствии 
с определителем дрожжей Курцмана [35].

Для исследования способности клеток дрожжей 
осуществлять восстановление ацетофенона получали 
биомассу микроорганизмов культивированием при 
25±1 °С на агаризованной питательной среде следующего 
состава, г/л: глюкоза – 10,0; дрожжевой автолизат – 5,0;  

NaCl – 0,5; MgSO4 – 0,4; (NH4)2SO4 – 3,0; KH2PO4 – 1,0; 
K2HPO4 – 0,1; агар микробиологический  – 15,0.  
Биомассу дрожжей собирали с поверхности среды, 
суспендировали в 0,05 М фосфатном буфере (рН 7), оса-
ждали центрифугированием при 10000 об/мин в течение 
3 мин и использовали в качестве биокатализатора.

Восстановление ацетофенона с помощью клеток 
дрожжей проводили при 30±1 °С в 0,05 М фосфатном 
буфере (рН 7), содержащем 5% изопропанола (в качестве 
экзогенного восстановителя), 5 г/л ацетофенона 
(в качестве субстрата). Биомассу вносили в реакционную 
смесь в концентрации 20 или 40 г/л (АСВ1) в зависи-
мости от цели эксперимента. При изучении влияния 
субстрата и экзогенного восстановителя на восстанов-
ление ацетофенона с помощью штамма D. hansenii 
Д-43-1 концентрацию кетона в буфере варьировали 
от 0 до 15 г/л, а содержание изопропанола изменяли 
от 0 до 30%. 

Для текущего контроля концентрации ацетофенона 
и S-1-фенилэтанола пробы реакционной смеси цен-
трифугировали при 10000 об/мин в течение 3 мин, 
дважды экстрагировали этилацетатом и осушали без-
водным сульфатом магния. Концентрацию субстрата 
и продукта в экстрактах определяли на хроматографе 
Chromatec-Crystal 5000.2 (ЗАО «СКБ Хроматек», Россия) 
с пламенно-ионизационным детектором на хиральной 
капиллярной колонке Supelco BetaDEX 110 (30 м × 
0,25 мм × 0,25 мкм). Режим анализа: температура 
испарителя – 220 °С, температура детектора – 220 °С, 
температура колонки – 60–220 °С, скорость нагрева– 
5 °С/мин, давление газа-носителя – 100 кПа, расход 
водорода – 25 мл/мин, расход воздуха – 250 мл/мин, 
газ-носитель – гелий. В качестве стандартных образцов 
использовали рацемическую смесь 1-фенилэтанола и 
S-(-)-1-фенилэтанол (Sigma-Aldrich, США).

Для выделения продукта реакции с целью анализа 
методами ядерного магнитного резонанса (ЯМР) реак-
ционную массу центрифугировали при 10000 об/мин 
в течение 10 мин. Продукт трансформации, содержа-
щийся в супернатанте, высаливали с помощью хлорида 
натрия и троекратно экстрагировали равным объемом 
диэтилового эфира. Экстракт осушали безводным 
сульфатом магния, концентрировали на ротационном 
испарителе RV10 digital (IKA, Германия) и фракциони-
ровали на хроматографической колонке с силикагелем 
Merk 60 (0,063–0,200 мм) с использованием в качестве 
элюента смеси гексана и этилацетата (8:1). Спектры 
ЯМР регистрировали на спектрометре BrukerAM-300 
(Bruker, Германия) в растворах CDCl3 (рабочая частота 
500,13 МГц для 1Н и 126,76 МГц для 13С). За внутренний 
стандарт принимали значение сигналов хлороформа: в 
ЯМР 1Н – примесь протонов в дейтерированном раство-
рителе (δ 7,27 м.д.), в ЯМР 13С – средний сигнал CDCl3 

(δ 77,00 м.д.). Спектральные характеристики S-1-фе-
нилэтанола совпадают с литературными данными [36]. 

При исследовании роста дрожжей D. hansenii Д-43-1 
на агаризованной питательной среде оценивали выход 
биомассы (в расчете на одну чашку Петри) и ее карбо-
нилредуктазную активность через 1, 2, 3 и 4 суток куль-
тивирования. Для оценки выхода биомассу, собранную 
с одной чашки Петри, суспендировали 5 мл 0,05 М 

1АСВ – абсолютно сухое вещество.
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фосфатного буфера (рН 7), после чего осаждали цен-
трифугированием при 10000 об/мин в течение 3 мин. 
Количество собранной сырой биомассы оценивали 
гравиметрически. Карбонилредуктазную активность 
биомассы определяли по начальной скорости накопления 
S-1-фенилэтанола в процессе восстановления ацето-
фенона в оптимальных условиях (0,05 М фосфатный 
буфер (рН 7), 10% изопропанола, 5 г/л субстрата и 40 г/л 
биомассы (АСВ), 30±1 °С, 1 ч). 

Гель-пленки бактериальной целлюлозы получали в 
процессе культивирования уксуснокислых бактерий 
K. sucrofermentans НЦ-12 [37] в статических условиях 
при 30 °С в колбах на 250 мл, содержащих 100 мл 
среды Хестрина – Шрамма [38] с 1% этанола, в течение 
12 суток. По окончании культивирования гель-пленки 
полимера извлекали из культуральной жидкости, про-
мывали дистиллированной водой и помещали в 0,5 М 
раствор NaOH для разрушения клеток продуцента. Раз-
рушение клеток осуществляли при температуре 80 °С в 
течение 30 мин. Затем полимерные пленки промывали 
дистиллированной водой до достижения нейтрального 
Рh и использовали для иммобилизации дрожжей.

Иммобилизацию клеток дрожжей D. hansenii Д-43-1 
на гель-пленках целлюлозы осуществляли адсорбци-
онно-инкубационным методом. Для адсорбции клеток 
образцы пленок массой около 34 г помещали в колбы 
объемом 250 мл, содержащие 20 мл суспензии дрожжей 
в жидкой питательной среде, и перемешивали при 
180 об/мин в течение 3 ч. Затем избыток среды декан-
тировали и промывали пленки 50 мл стерильной воды 
(перемешивание при 180 об/мин в течение 15 мин). 
После декантирования воды пленки инкубировали в 
статических условиях течение 3 суток при 30 °С. 

Содержание биомассы дрожжей в биокомпозитах 
оценивали по концентрации клеточной массы в фер-
ментативных гидролизатах, полученных путем гидролиза 
пленок целлюлолитическим препаратом Целлолюкс F. 
Концентрацию биомассы в гидролизатах определяли 
турбометрически при длине волны 540 нм на фотоэ-
лектроколориметре КФК-2 (ПО «Загорский оптико-ме-
ханический завод», Россия).

Культивирование дрожжей D. hansenii Д-43-1 в жидкой 
питательной среде с использованием биокомпозита как 
иммобилизованного инокулята осуществляли в колбах 
на 250 мл, в которые вносили образцы гель-пленок 
композита (около 34 г) и 30 мл питательной среды. В 
качестве контроля использовали среду того же объема, 
засеянную планктонным инокулятом до конечной концен-
трации биомассы 1 г/л (АСВ). Культивирование проводили 
при 25±1 °С, 220 об/мин. По окончании ферментации 
культуральную жидкость декантировали. Для повторной 
ферментации биокомпозит заливали свежей порцией 
питательной среды. Рост дрожжей в жидких культурах 
оценивали турбометрически при длине волны 540 нм 
на фотоэлектроколориметре КФК-2.

Восстановление ацетофенона с помощью клеточной 
массы D. hansenii Д-43-1, полученной в процессах фер-
ментации с использованием иммобилизованного ино-
кулята, выделенной из культуральной жидкости, осущест-
вляли в 0,05 М фосфатном буфере (рН 7), содержащем 
10% изопропанола, 5 г/л субстрата и 40 г/л биомассы 
(АСВ), при 30±1 °С в течение 1 ч. В экспериментах по 
исследованию возможности повторного использования 

биокатализатора биомассу после окончания первого 
цикла трансформации отделяли от жидкой фракции реак-
ционной смеси центрифугированием при 10000 об/мин  
в течение 5 мин. Для проведения последующего цикла 
трансформации биомассу суспендировали в свежем буфере, 
содержащем 5 г/л ацетофенона и 10% изопропанола. 

Для восстановления ацетофенона с помощью 
образцов культуральной жидкости в них вносили аце-
тофенон и изопропанол в концентрации 5 г/л и 10% 
соответственно. Реакцию проводили при 30±1 °С. Выход 
S-1-фенилэтанола в реакции с культуральной жидкостью 
оценивали через 2 ч трансформации. 

Трансформацию ацетофенона в присутствии био-
композита как иммобилизованного биокатализатора 
проводили при 30±1 °С при перемешивании на шейкере 
(180 об/мин) в течение 2 ч. Образцы биокомпозита 
массой 5 г вносили в 10 мл 0,05 М фосфатного буфера 
(Рh 7), содержащего 5 г/л субстрата и 10% этанола.  
В экспериментах по поиску условий трансформации 
концентрацию субстрата и изопропанола увеличивали 
до 15 г/л и 30% соответственно.

Все эксперименты проводили в трех повторностях. 
Полученные данные обрабатывали с использованием 
компьютерной программы Microsoft Excel.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Получение биомассы дрожжей и исследование спо-

собности восстанавливать ацетофенон. Асимметрическое 
восстановление прохиральных карбонилсодержащих 
соединений с помощью клеток микроорганизмов широко 
применяется в энантиоселективном биокатализе для 
получения энантиомерно чистых вторичных спиртов 
[32, 39, 40]. Восстановление катализируется внутри-
клеточными алкогольдегидрогеназами/карбонилредук-
тазами, использующими в качестве восстановителя 
NADH или NADPH [41, 42]. При использовании клеточных 
биокатализаторов процесс осуществляют в присутствии 
экзогенного восстановителя (глюкозы, изопропанола, 
этанола и др.), который используется для регенерации 
восстановленной формы коферментов [41]. 

На первом этапе исследования с целью поиска пер-
спективного энантиоселективного клеточного биокатали-
затора с карбонилредуктазной активностью исследовали 
способность трех штаммов D. hansenii, представленных 
в таблице, восстанавливать ацетофенон. Для трансфор-
мации использовали биомассу, полученную культивиро-
ванием дрожжей на агаризованной питательной среде в 
течение 3 суток. В качестве экзогенного восстановителя 
использовали изопропанол, который может не только 
регенерировать кофермент, но также увеличивать рас-
творимость гидрофобных субстратов в воде и повышать 
энантиоселективность клеточного биокатализатора – как 
полагают, за счет подавления активности сопутствующих 
ферментов, восстанавливающих субстрат с образованием 
антипода целевого энантиомера спирта [36, 42].

В результате исследования было обнаружено, что 
клетки двух штаммов дрожжей D. hansenii (Д-43-1 и 
ВКПМ Y-1889) восстанавливают ацетофенон в 0,05 М 
фосфатном буфере (РН 7), содержащем 5 г/л субстрата и 
10% изопропанола, в S-1-фенилэтанол с высокой энантио-
мерной чистотой (не менее 99% энантиомерного избытка), 
тогда как третий штамм (D. hansenii ВКПМ Y-1554) не 
работает в исследуемых условиях (см. таблицу, рис. 1). 
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Рис. 1. Восстановление ацетофенона в S-1-фенилэтанол  
с помощью клеток дрожжей Debaryomyces hansenii Д-43-1  
и ВКПМ Y-1889 в присутствии изопропанола 

Fig. 1. Reduction of acetophenone to S-1-phenylethanol 
using yeast cells Debaryomyces hansenii D-43-1  
and VKPM Y-1889 in the presence of isopropanol

Наиболее высокий выход S-1-фенилэтанола 
(более 80%) был получен при использовании штамма 
D.  hansenii Д-43-1. Причем для достижения этого 
результата потребовалось вдвое меньшее количества 
биомассы и более короткий промежуток времени по 
сравнению с использованием штамма D. hansenii ВКПМ 
Y-1889 (см. таблицу), в связи с чем штамм D. hansenii 
Д-43-1 был выбран как перспективный для дальнейшего 
исследования.

Следует отметить, что в литературе имеется сообщение 
об одном штамме D. hansenii NCAIM Y00468, который 
также проявлял карбонилредуктазную активность в 
присутствии изопропанола [43]. С помощью лиофилизи-
рованных и регидратированных клеток этого микроор-
ганизма восстановление ацетофенона и его аналогов 
протекает энантиоселективно с образованием спиртов 
S-конфигурации. При восстановлении ацетофенона так 
же, как и в случае использования D. hansenii Д-43-1, 
удается получить S-1-фенилэтанол с энантиомерным 
избытком 99%, но с меньшим выходом (63%) и при 
более низкой концентрации субстрата.

При исследовании условий восстановления ацето-
фенона с помощью клеток штамма D. hansenii Д-43-1 
(20 г/л АСВ) было установлено, что оптимальной концен-
трацией субстрата является 5 г/л (рис. 2). В отсутствии 
изопропанола выход продукта через 2 ч составил не 
более 12% (см. рис. 2, b), что подтверждает участие 
изопропанола как экзогенного восстановителя в иссле-
дуемом процессе. Наибольший выход продукта был 
достигнут в области концентрации 5–10% изопропанола 
(см. рис. 2, b). Исследование энантиомерного состава 
продуктов восстановления показало, что независимо от 
концентрации субстрата или экзогенного восстановителя 
образуется S-1-фенилэтанол высокой энантиомерной 
чистоты (см. рис. 2).

Установлено, что при культивировании дрожжей на 
агаризованной питательной среде наибольшая карбо-
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Рис. 2. Зависимость выхода и энантиомерного избытка S-1-фенилэтанола от начальной концентрации субстрата (а)  
и экзогенного восстановителя (b) в процессе восстановления ацетофенона в присутствии биомассы дрожжей 
Debaryomyces hansenii Д-43-1
Fig. 2. Yield and enantiomeric excess of S-1-phenylethanol versus the initial concentration of substrate (a) and exogenous 
reducing agent (b) in the process of acetophenone reduction in the presence of yeast biomass Debaryomyces hansenii D-43-1 
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нилредуктазная активность биомассы D. hansenii Д-43-1 
достигается через 72 ч, что соответствует началу ста-
ционарной фазы роста культуры (рис. 3). Дальнейшее 
увеличение продолжительности культивирования до 96 ч 
приводит к снижению активности биомассы почти на 30%.
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Рис. 3. Выход и карбонилредуктазная активность 
биомассы Debaryomyces hansenii Д-43-1  
в зависимости от продолжительности роста  
на агаризованной питательной среде

Fig. 3. Yield and carbonyl reductase activity of Debaryomyces 
hansenii D-43-1 biomass depending on the duration  
of growth on an agarized nutrient medium

Получение биокомпозита и исследование возмож-
ности его использования в качестве биокатализатора для 
восстановления ацетофенона. На втором этапе работы 
клетки D. hansenii Д-43-1 были иммобилизованы на гель-
пленках бактериальной целлюлозы. Гель-пленки получали 
с помощью бактериального штамма K. sucrofermentans 
НЦ-12 [37], способного продуцировать целлюлозу при 
культивировании на среде Хестрина – Шрамма [38], 
содержащей 1% этанола. В результате культивирования 
бактерий в статических условиях были получены гель-
пленки со средней массой 34 г, в которых содержание 
целлюлозы (АСВ) составило около 1,5%. Иммобилизацию 
дрожжей осуществляли адсорбционно-инкубационным 
методом. При этом инкубирование клеток дрожжей, 
адсорбированных в течение 3 ч на носителе, пропи-
танном питательными компонентами, осуществляли в 
течение 72 ч по аналогии с культивированием микро-
организмов на агаризованной среде (см. рис. 3). В 
результате иммобилизации были получены образцы 
биокомпозитов, содержащие около 70 мг биомассы 
дрожжей (АСВ) в 1 г сырого полимера.

Далее образцы полученного биокомпозита были 
разрезаны на фрагменты и использованы для иссле-
дования возможности их применения в качестве био-
катализатора для восстановления ацетофенона. Биока-
тализатор массой 5 г вносили в буфер объемом 10 мл, 
содержащий оптимальные концентрации субстрата и 
восстановителя. Однако образование продукта восста-
новления ацетофенона в этих условиях не было обна-
ружено. Варьирование концентрациями субстрата (от 7 
до 15 г/л), экзогенного восстановителя (от 15 до 30%), 
а также двукратное увеличение содержания биоком-
позита тоже не привели к успеху.

Инкубирование биокомпозита в жидкой питательной 
среде. Согласно современным представлениям, иммо-
билизованные клетки микроорганизмов находятся в 
особенном состоянии, отличном от стационарной фазы 
роста свободных клеток [44]. Более того, отмечается, что 
в результате иммобилизации клеток может происходить 
изменение ферментативной активности, появление новых 
функциональных белков и метаболитов, например, у 
иммобилизованных клеток ряда дрожжей было отмечено 
увеличение концентрации ферментов, участвующих в 
анаэробных процессах, гликолизе [44]. Можно ожидать, 
что клетки D. hansenii Д-43-1, иммобилизованные на 
бактериальной целлюлозе, также могут биохимически 
отличаться от клеток стационарной фазы роста, выра-
щенных на поверхности агаризованной среды, в том 
числе отсутствием карбонилредуктазной активности.

С целью изменения биохимических характеристик 
клеток, иммобилизованных на целлюлозе, образцы 
биокомпозита были помещены в свежую питательную 
среду и инкубированы при 25±2 °С и 220 об/мин в 
течение 32 ч. В процессе культивирования образцы 
биокомпозита периодически отбирали и тестировали 
на способность осуществлять восстановление ацето-
фенона. Однако ни один из образцов не проявил кар-
бонилредуктазную активность (рис. 4).

биокомпозит культурная жидкость
Время, ч

Вы
хо

д,
 %

80

60

40

20

0
4              8              16             24            32

Рис. 4. Выход S-1-фенилэтанола при использовании 
в качестве биокатализатора образцов культуральной 
жидкости и биокомпозита, полученных при различной 
продолжительности ферментации

Fig. 4. Yield of S-1-phenylethanol when culture liquid and 
biocomposite samples obtained with different fermentation 
duration used as a biocatalyst

Вместе с тем было обнаружено, что в процессе 
культивирования дрожжевые клетки могут выходить из 
гель-пленки целлюлозы в питательную среду и проявлять 
в ней карбонилредуктазную активность. Добавление 
ацетофенона и изопропанола (в концентрации 5 г/л 
и 10% соответственно) к 1 мл культуральной жидкости 
и последующее инкубирование при 30 °С позволило 
обнаружить накопление S-1-фенилэтанола в реакционной 
смеси. Наибольший выход продукта (около 80%) был 
получен с помощью образцов культуральной жидкости, 
отобранных через 8 и 16 ч ферментации (см. рис. 4). 
Дальнейшее увеличение продолжительности культи-
вирования сопровождалось снижением восстанови-
тельных свойств культуральной жидкости. Выход продукта  
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S-1-фенилэтанола, полученного с помощью образца 
культуральной жидкости, взятого через 32 ч фермен-
тации, не превышал 44%. 

Установлено, что в процессе культивирования био-
композита концентрация биомассы в культуральной 
жидкости увеличивается до 21 г/л (АСВ) (рис. 5). Такое 
существенное увеличение невозможно объяснить только 
лишь десорбцией дрожжевых клеток из гель-пленки 
целлюлозы. Очевидно, вышедшие из биокомпозита 
клетки способны к активному росту в жидкой питательной 
среде, что позволяет рассматривать биокомпозит как 
иммобилизованный инокулят для получения свободных 
клеток штамма D. hansenii Д-43-1. 
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Рис. 5. Накопление биомассы Debaryomyces hansenii 
Д-43-1 при использовании иммобилизованного 
и планктонного инокулята 

Fig. 5. Accumulation of Debaryomyces hansenii D-43-1 
biomass using an immobilized and planktonic inoculum

В работе [45] показано, что иммобилизованный 
инокулят, созданный путем иммобилизации в криогеле 
поливинилового спирта клеток Chlorella vulgaris, позволяет 
интенсифицировать процесс получения биомассы сво-
бодных клеток при культивировании микроводорослей 
в миксотрофных условиях. Увеличение исходной кон-
центрации иммобилизованных клеток, вводимых в 
среду вместе с носителем, приводит к значительному 
повышению скорости накопления потомственных сво-
бодных клеток в среде. При использовании иммоби-
лизованного инокулята в оптимальной концентрации 
этот показатель был почти в 4 раза выше, чем при 
применении в качестве посевного материала неза-
крепленных клеток (10% от объема среды). 

Сравнение роста дрожжей D. hansenii Д-43-1 при куль-
тивировании в присутствии биокомпозита с контрольной 
ферментацией, в которой в качестве посевного материала 
использовалась суспензия свободных клеток в концентрации 
1 г/л (АСВ), показало, что в случае иммобилизованного 
инокулята накапливается в 3 раза больше биомассы, 
нежели в контроле с планктонным инокулятом (см. рис. 5). 

Обнаружено, что иммобилизованный инокулят 
можно применять для получения биомассы много-
кратно (рис. 6). В повторных ферментациях в течение 
15-часового культивирования стабильно достигается 
высокий выход биомассы (около 13 г/л), который почти 
в 2 раза превышает уровень, достигнутый за тот же 
промежуток времени при использовании планктонного 
посевного материала (см. рис. 5 и 6). 

Рис. 6. Рост дрожжей Debaryomyces hansenii Д-43-1 
в повторных ферментациях с использованием 
иммобилизованного инокулята (пунктирными стрелками 
отмечено время замены культуральной жидкости  
в реакторе свежей средой)

Fig. 6. Growth of yeast Debaryomyces hansenii D-43-1  
in repeated fermentations using an immobilized inoculum 
(the dotted arrows indicate the time of replacement  
of the culture liquid in the reactor with a fresh medium)

Исследование способности планктонной био-
массы, полученной с помощью иммобилизованного 
инокулята, восстанавливать ацетофенон. Для оценки 
пригодности биомассы свободных клеток дрожжей, 
полученных в результате культивирования иммобили-
зованного инокулята, для восстановления ацетофенона в  
S-1-фенилэтанол была осуществлена 15-часовая фермен-
тация, обеспечивающая высокую карбонилредуктазную 
активность культуральной жидкости (см. рис. 4). Затем 
отмытая от среды биомасса была испытана на способность 
восстанавливать ацетофенон в оптимальных условиях.

В результате исследования было установлено, что 
полученная биомасса является эффективным энантио-
селективным биокатализатором и позволяет получать 
S-1-фенилэтанол высокой энантиомерной чистоты (99,9% 
энантиомерного избытка) с выходом 88% (рис. 7, цикл 1). 
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Рис. 7. Выход и энантиомерная чистота S-1-фенилэтанола 
при многократном использовании в качестве 
биокатализатора биомассы дрожжей, полученной  
с помощью иммобилизованного инокулята
Fig. 7. Yield and enantiomeric purity of S-1-phenylethanol 
with repeated use of yeast biomass obtained using  
an immobilized inoculum as a biocatalyst
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Биокатализатор в концентрации 40  г/л (АСВ) может 
использоваться повторно для восстановления аце-
тофенона в энантиомерно чистый S-1-фенилэтанол 
в течение четырех циклов трансформации без суще-
ственного снижения выхода продукта (см. рис. 7). Однако 
в пятом цикле выход продукта снижается до 65%, что 
ограничивает возможность дальнейшего эффективного 
использования биокатализатора. 

При исследовании биокаталитических свойств 
образцов биомассы, выделенных из культуральных 
жидкостей повторных ферментаций, обнаружено, что 
все они проявляют карбонилредуктазную активность 
и позволяют получать S-1-фенилэтанол высокой энан-
тиомерной чистоты (не менее 99 % энантиомерного 
избытка) практически с таким же выходом, как после 
первой ферментации (рис. 8). 
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Рис. 8. Выход S-1-фенилэтанола в процессе восстановления 
ацетофенона с помощью образцов культуральной жидкости 
и биомассы, полученных при многократном использовании 
иммобилизованного инокулята

Fig. 8. Yield of S-1-phenylethanol in the process  
of acetophenone reduction using culture fluid and biomass 
samples obtained by repeated use of an immobilized inoculum

Вместе с тем было обнаружено, что, если биомассу не 
выделять из ростовой среды и использовать в качестве 
биокатализатора саму культуральную жидкость, не всегда 
можно осуществить восстановление ацетофенона. Только 
в случае образца культуральной жидкости из первой 
ферментации образуется S-1-фенилэтанол с высоким 
выходом 81% (см. рис. 8). При использовании образцов 
культуральной жидкости, полученных в повторных фер-

ментациях, реакция восстановления ацетофенона не 
протекала, несмотря на присутствие в них дрожжевых 
клеток с карбонилредуктазной активностью. Это ука-
зывает на наличие в культуральных жидкостях, полученных 
во второй и последующих ферментациях, ингибиторов 
карбонилредуктазной активность клеток. Возможно, что 
накоплением таких ингибиторов в гель-пленке целлюлозы 
в процессе иммобилизации дрожжей объясняется отсут-
ствие карбонилредуктазной активности у биокомпозита. 
Можно также полагать, что ингибиторы, образующиеся в 
пленке, выделяются из нее в культуральную жидкость во 
время ферментации и подавляют активность свободных 
клеток. В таком случае предотвращение их образования 
или удаление in situ может привести к появлению кар-
бонилредуктазной активности у биокомпозита.

ЗАКЛЮЧЕНИЕ
Таким образом, продемонстрирована перспек-

тивность применения бактериальной целлюлозы на 
стадии подготовки клеточного биокатализатора для 
интенсификации процессов получения энантиомерно 
чистых спиртов асимметрическим восстановлением 
прохиральных карбонилсодержащих предшественников.

На примере дрожжей D. hansenii Д-43-1, клетки 
которых способны энантиоселективно восстанавливать 
ацетофенон в S-1-фенилэтанол в присутствии изопро-
панола, показано, что бактериальная целлюлоза может 
быть использована в качестве матрицы для получения 
иммобилизованного инокулята. Применение такого ино-
кулята позволяет накапливать энзиматически активную 
биомассу микроорганизмов с карбонилредуктазной 
активностью более эффективно, чем при использовании 
планктонного посевного материала. Иммобилизованный 
инокулят может быть использован многократно, что 
открывает перспективу для дальнейшей разработки 
способа получения энзиматически активной биомассы 
D. hansenii Д-43-1 в непрерывном режиме.

Биомасса свободных клеток, полученная с приме-
нением иммобилизованного инокулята, после выделения 
из культуральной жидкости способна восстанавливать 
ацетофенон в энантиомерно чистый S-1-фенилэтанол (не 
менее 99% энантиомерного избытка) с выходом 88%. 
На примере биомассы, полученной после первой фер-
ментации, показано, что она может быть использована 
повторно в течение четырех циклов без существенного 
снижения выхода продукта. Только в пятом цикле выход 
продукта снижается до 65%.
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