Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Influence of structure-forming agent on rheological properties of polymer mixture based on low and high density polyethylene

https://doi.org/10.21285/achb.895

EDN: BWKCTN

Abstract

The paper considers the effect of a structure-forming agent (titanium dioxide) on the rheological characteristics of a polymer mixture based on low and high density polyethylene, taken in a 50/50 ratio. The titanium dioxide concentration was 1 wt%. The rheological behavior of melts of polymer composites was studied using a CEAST MF50 capillary rheometer (Instron, Italy) at temperatures of 190, 210, 230, 250 °С and loads of 3.8, 5.0, 10.0, 12.5, and 21.6 kg. The effect of temperature and shear stress on the regularity of changes in effective viscosity and shear rate has been established. According to the Arrhenius – Frenkel – Eyring model, the activation energy of the viscous flow of composites is determined. The “apparent” activation energy of the viscous flow varies within 16.04–33.10 kJ/mol for the initial polyethylene mixture and in the range of 6.96–33.10 kJ/mol for composites modified with a structurant based on a mixture of low and high density polyethylene. A universal temperature-invariant characteristic of the viscosity properties of polymeric materials has been constructed, which makes it possible, by extrapolating this dependence to the region of high shear rates, to predict the technological mode of their processing by injection molding and extrusion.

About the Authors

F. A. Mustafayeva
Institute of Polymer Materials of the Ministry of Science and Education of the Republic of Azerbaijan
Azerbaijan

Fatima A. Mustafayeva, Cand. Sci. (Chemistry), Leading Researcher

124, Samed Vurgun St., Sumgait, AZ5004



N. T. Kakhramanov
Institute of Polymer Materials of the Ministry of Science and Education of the Republic of Azerbaijan
Azerbaijan

Najaf T. Kakhramanov, Dr. Sci. (Chemistry), Professor

124, Samed Vurgun St., Sumgait, AZ5004

   


N. B. Arzumanova
Institute of Polymer Materials of the Ministry of Science and Education of the Republic of Azerbaijan
Azerbaijan

Nushaba B. Arzumanova, Cand. Sci. (Chemistry), Assosiate Professor

124, Samed Vurgun St., Sumgait, AZ5004

   


G. H. Nuraliyeva
Institute of Polymer Materials of the Ministry of Science and Education of the Republic of Azerbaijan
Azerbaijan

Gunay H. Nuraliyeva, Applicant

124, Samed Vurgun St., Sumgait, AZ5004

   


References

1. Mishra J., Tiwari S.K., Abolhasani M.M., Azimi S., Nayak G.C. 2 – Fundamental of polymer blends and its thermodynamics. In: Raghvendra K.M., Sabu T., Nandakumar K. (eds). Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends. Woodhead Publishing; 2017, p. 27-55. DOI: 10.1016/B978-0-08-101991-7.00002-9.

2. Sarathchandran C. Chapter 3 – Interfacial characterization of immiscible polymer blends using rheology. In: Sabu T., Sarathchandran C., Chandran N. (eds). Micro and nano technologies, rheology of polymer blends and nanocomposites. Elsevier; 2020, p. 31-48. DOI: 10.1016/B978-0-12-816957-5.00003-3.

3. Ruys A. 6 – Alumina bearings in orthopedics: origin and evolution. In: Ruys A. (ed.). Alumina ceramics. Biomedical and clinical applications. Woodhead Publishing; 2019, p. 139-178. DOI: 10.1016/B978-0-08-102442-3.00006-3.

4. Nabeela A. M. Studing the mechanical properties and morphology of ternary blends of polyethylene. Engineering and Technology Journal. 2009;27(6):11971205. DOI: 10.30684/etj.27.6.17.

5. Shebani A., Klash A., Elhabishi R., Abdsalam S., Elbreki H., Elhrari W. The influence of LDPE content on the mechanical properties of HDPE/LDPE blends. Research & Development in Material Science. 2018;7(5):791-797. DOI: 10.31031/RDMS.2018.07.000672.

6. Ronca S. Chapter 10 – Polyethylene. In: Marianne G. (ed.). Brydson’s Plastics Materials. ButterworthHeinemann; 2017, p. 247-278. DOI: 10.1016/B978-0-323-35824-8.00010-4.

7. Basmage O.M., Hashmi M.S.J. Plastic products in hospitals and healthcare systems. In: Hashmi S., Choudhury I.A. (eds). Encyclopedia of renewable and sustainable materials. Elsevier; 2020, vol. 1, p. 648-657. DOI: 10.1016/B978-0-12-803581-8.11303-7.

8. Kakhramanov N.T., Mustafayeva F.A., Arzumanova N.B., Guliev A.D. Crystallization kinetics of composite materials based on polyethylene mixture with high and low density. Inorganic Materials: Applied Research. 2020;11(1):127131. DOI: 10.1134/S2075113320010177.

9. Datta J., Kosiorek P., Włoch M. Effect of high loading of titanium dioxide particles on the morphology, mechanical and thermo-mechanical properties of the natural rubberbased composites. Iranian Polymer Journal. 2016;25:10211035. DOI: 10.1007/s13726-016-0488-7.

10. Kakhramanov N.T., Bayramova I.V., Mammadli U.M., Ismailzade A.D., Osipchik V.S. Properties nanocomposites on the basis of vezuvian and the copolymer of ethylene with hexene. Plasticheskie massy. 2019;5-6:36-39. (In Russian). DOI: 10.35164/0554-2901-2019-5-636-39. EDN: HXNTOR.

11. Nguyen V.G., Thai H., Mai D.H., Tran H.T., Tran D.L., Vu M.T. Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites. Composites Part B: Engineering. 2013;45(1):1192-1198. DOI: 10.1016/j.compositesb.2012.09.058.

12. Diasanayake M.A.K.L., Senadeera G.K.R., Sarangika H.N.M., Ekanayake P.M.P.C., Thotawattage C.A., Divarathne H.K.D.W.M.N.R., et al. TiO2 as a low cost, multi-functional material. Materilastoday: Proceedings. 2016;3(S1):S40-S47. DOI: 10.1016/j.matpr.2016.01.006.

13. Kubacka A., Suárez Diez M., Rojo D., Bargiela R., Ciordia S., Zapico I., et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Scientific Reports. 2014;4:4134. DOI: 10.1038/srep04134.

14. Anpilogova V.S., Kravchenko T.P., Nikolaeva N.Y., Ney Z.L., Osipchik V.S. Rheological properties of composite materials on the basis of polyethylene of high density. Plasticheskie massy. 2016;5-6:9-11. (In Russian). DOI: 10.35164/0554-2901-2016-5-6-9-11. EDN: WIOBHH.

15. Qurbanova R.V. Rheological properties of organo-inorganic hybrid gels based on functionalized low density polyethylene and clinoptilolite. Plasticheskie massy. 2020;7-8:3-7. (In Russian). DOI: 10.35164/0554-29012020-7-8-3-7. EDN: DVGVAS.

16. Kochurov D.V. Rheology of dilute polymer solutions. Mezhdunarodnyi studencheskii nauchnyi vestnik. 2018;5:157. (In Russian). EDN: UZQMBU.

17. Lou Y., Lei Q., Wu G. Research on polymer viscous flow activation energy and non-newtonian index model based on feature size. Advances in Polymer Technology. 2019;1070427. DOI: 10.1155/2019/1070427.

18. Alzarzouri F., Jabra R., Deri F. Melt rheological behaviour and mechanical properties of poly(lactic acid)/high density polyethylene blends. Materials Physics and Mechanics. 2021;47(1):103-116. DOI: 10.18149/MPM.4712021_10.

19. Vinogradov G.V., Malkin A.Ya. Temperature-independent viscosity characteristics of polymer systems. Journal of Polymer Science Part A: General Papers. 1964;2(5):2357-2372. DOI: 10.1002/pol.1964.100020525.

20. Allahverdiyeva Kh.V., Kakhramanov N.T., Abdullin M.I. Rheological properties of metal-filled systems based on low-density polyethylene and aluminum. Inorganic Materials: Applied Research. 2022;13(5):1340-1345. DOI: 10.1134/s2075113322050033.


Review

For citations:


Mustafayeva F.A., Kakhramanov N.T., Arzumanova N.B., Nuraliyeva G.H. Influence of structure-forming agent on rheological properties of polymer mixture based on low and high density polyethylene. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(1):19–26. https://doi.org/10.21285/achb.895. EDN: BWKCTN

Views: 362


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)