Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Каротиноиды: обзор основных биотехнологических способов и условий получения

https://doi.org/10.21285/achb.905

EDN: LQHTED

Аннотация

Каротиноиды представляют собой группу изопреноидных пигментов, обладающих высокой биологической активностью, не ограниченной провитаминными свойствами. Благодаря способности участвовать в окислительно-восстановительных реакциях, каротины все чаще рассматриваются в качестве перспективных соединений в системах профилактики и коррекции сердечно-сосудистых и нейродегенеративных нарушений, онкологии и других заболеваний. Каротиноиды широко используются при изготовлении пищевых добавок и красителей, кормов для аквакультуры, сельскохозяйственных животных и птиц, а также в нутрицевтике и косметике. При составлении оптимальных рационов кормления отдельно рассматривается питательность по витамину А, поскольку данный витамин является жизненно необходимым для нормального роста, развития, поддержания и воспроизводства. Основным предшественником витамина А является β-каротин, поступающий в организм исключительно с растительными кормами. Однако содержащийся в растительном сырье каротин является неустойчивым соединением, в связи с чем становится актуальным использование кормовых добавок, содержащих в своем составе в числе прочего и β-каротин. В промышленности каротиноиды получают путем или химического, или биологического синтеза. При этом большую часть – 80–90% каротиноидов – получают путем именно химического синтеза. В то же время запрос общества на экологизацию производства диктует необходимость поиска альтернативных путей получения каротиноидов. В данной статье представлен обзор основных биотехнологических способов получения каротинов с использованием ряда микроорганизмов, включая микроводоросли, бактерии и грибы, а также проанализировано влияние условий культивирования на выход целевых пигментов.

Об авторах

В. В. Ядерец
Российский биотехнологический университет
Россия

Ядерец Вера Владимировна, к.б.н., заведующий лабораторией

125080, г. Москва, Волоколамское шоссе, 11



Н. В. Карпова
Российский биотехнологический университет
Россия

Карпова Наталья Викторовна, к.б.н., научный сотрудник

125080, г. Москва, Волоколамское шоссе, 11



Е. В. Глаголева
Российский биотехнологический университет
Россия

Глаголева Елена Викторовна, научный сотрудник

125080, г. Москва, Волоколамское шоссе, 11



К. С. Петрова
Российский биотехнологический университет
Россия

Петрова Ксения Сергеевна, младший научный сотрудник

125080, г. Москва, Волоколамское шоссе, 11



А. С. Шибаева
Российский биотехнологический университет
Россия

Шибаева Александра Сергеевна, младший научный сотрудник

125080, г. Москва, Волоколамское шоссе, 11



В. В. Джавахия
Российский биотехнологический университет
Россия

Джавахия Вахтанг Витальевич, к.б.н., старший научный сотрудник

125080, г. Москва, Волоколамское шоссе, 11



Список литературы

1. Pagels F., Vasconcelos V., Guedes A.C. Carotenoids from сyanobacteria: biotechnological potential and optimization strategies // Biomolecules. 2021. Vol. 11, no. 5. P. 735. DOI: 10.3390/biom11050735.

2. Maoka T. Carotenoids as natural functional pigments // Journal of Natural Medicines. 2020. Vol. 74, no. 1. P. 1–16. DOI: 10.1007/s11418-019-01364-x.

3. Ashokkumar V., Flora G, Sevanan M., Sripriya R., Chen W.H., Park J.-H., et al. Technological advances in the production of carotenoids and their applications – a critical review // Bioresource Technology. 2023. Vol. 367. P. 128215. DOI: 10.1016/j.biortech.2022.128215.

4. Foong L.C., Loh C.W.L., Ng H.S., Lan J.C.-W. Recent development in the production strategies of microbial carotenoids // World Journal of Microbiology and Biotechnology. 2021. Vol. 37, no. 1. P. 12. DOI: 10.1007/s11274-020-02967-3.

5. Novoveská L., Ross M.E., Stanley M.S., Pradelles R., Wasiolek V., Sassi J.-F. Microalgal carotenoids: a review of production, current markets, regulations, and future direction // Marine Drugs. 2019. Vol. 17, no. 11. P. 640. DOI: 10.3390/md17110640.

6. Meléndez-Martínez A.J. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease // Molecular Nutrition and Food Research. 2019. Vol. 63, no. 15. P. 1801045. DOI: 10.1002/mnfr.201801045.

7. Ernst H. Recent advances in industrial carotenoid synthesis // Pure and Applied Chemistry. 2002. Vol. 74, no. 11. P. 2213–2226. DOI: 10.1351/pac200274112213.

8. Lim K.C., Yusoff F.M., Shariff M., Kamarudin, M.S. Astaxanthin as feed supplement in aquatic animals // Reviews in Aquaculture. 2018. Vol. 10, no. 3. P. 738–773. DOI: 10.1111/raq.12200.

9. Botella-Pavía P., Rodríguez-Concepción M. Carotenoid biotechnology in plants for nutritionally improved foods // Physiologia Plantarum. 2006. Vol. 126. P. 369–381. DOI: 10.1111/j.1399-3054.2006.00632.x.

10. Gong M., Bassi A. Carotenoids from microalgae: a review of recent developments // Biotechnology Advances. 2016. Vol. 34, no. 8. P. 1396–1412. DOI: 10.1016/j.biotechadv.2016.10.005.

11. Rodriguez-Amaya D.B. Update on natural food pigments – a mini-review on carotenoids, anthocyanins, and betalains // Food Research International. 2019. Vol. 124. P. 200–205. DOI: 10.1016/j.foodres.2018.05.028.

12. Avalos J., Limón M.C. Biological roles of fungal carotenoids // Current Genetics. 2015. Vol. 61. P. 309–324. DOI: 10.1007/s00294-014-0454-x.

13. Haxo F. Carotenoids of the mushroom Cantharellus cinnabarinus // Botanical Gazette. 1950. Vol. 112, no. 2. P. 228–232.

14. Da Silva S.R.S., Montenegro Stamford T.C., Albuquerque W.W.C., Vidal E.E., Montenegro Stamford T.L. Reutilization of residual glycerin for the produce β-carotene by Rhodotorula minuta // Biotechnology Letters. 2020. Vol. 42. P. 437–443. DOI: 10.1007/s10529-020-02790-8.

15. Cheng Y.-T., Yang C.-F. Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes // Journal of the Taiwan Institute of Chemical Engineers. 2016. Vol. 61. P. 270–275. DOI: 10.1016/j.jtice.2015.12.027.

16. Leyton A., Flores, L., Mäki-Arvela P., Lienqueo M.E., Shene C. Macrocystis pyrifera source of nutrients for the production of carotenoids by a marine yeast Rhodotorula mucilaginosa // Journal of Applied Microbiology. 2019. Vol. 127, no. 4. P. 1069–1079. DOI: 10.1111/jam.14362.

17. Артюхова С.И., Бондарева Г.И. Биотехнология новых форм каротиноидных препаратов на основе микробного синтеза // Россия молодая: передовые технологии – в промышленность. 2013. N 3. C. 4–6. EDN: RQCWEN.

18. Liu Z., van den Berg C., Weusthuis R.A., Dragone G., Mussatto S.I. Strategies for an improved extraction and separation of lipids and carotenoids from oleaginous yeast // Separation and Purification Technology. 2021. Vol. 257. P. 117946. DOI: 10.1016/j.seppur.2020.117946.

19. Zheng X., Hu R., Chen D., Chen J., He W., Huang L., et al. Lipid and carotenoid production by the Rhodosporidium toruloides mutant in cane molasses // Bioresource Technology. 2021. Vol. 326. P. 124816. DOI: 10.1016/j.biortech.2021.124816.

20. Sun Z., Lv J., Ji C., Liang H., Li S., Yang Z., et al. Analysis of carotenoid profile changes and carotenogenic genes transcript levels in Rhodosporidium toruloides mutants from an optimized Agrobacterium tumefaciens-mediated transformation method // Biotechnology and Applied Biochemistry. 2021. Vol. 68, no. 1. P. 71–81. DOI: 10.1002/bab.1895.

21. Chaiyaso T., Manowattana A. Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507 // Preparative Biochemistry and Biotechnology. 2018. Vol. 48, no. 1. P. 13–23. DOI: 10.1080/10826068.2017.1381620.

22. Manowattana A., Techapun C., Watanabe M., Chaiyaso T. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor // Journal of Bioscience and Bioengineering. 2018. Vol. 125, no. 1. P. 59–66. DOI: 10.1016/j.jbiosc.2017.07.014.

23. Cardoso L.A.C., Jackel S., Karp S.G., Framboisier X., Chevalot I., Marc I. Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol // Bioresource Technology. 2016. Vol. 200. P. 374–379. DOI: 10.1016/j.biortech.2015.09.108.

24. De la Fuente J.L., Rodríguez-Sáiz M., Schleissner C., Díez B., Peiro E., Barredo J.L. High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous // Journal of Biotechnology. 2010. Vol. 148. P. 144–146. DOI: 10.1016/j.jbiotec.2010.05.004.

25. Gassel S., Breitenbach J., Sandmann G. Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant // Applied Microbiology and Biotechnology. 2014. Vol. 98. P. 345–350. DOI: 10.1007/s00253-013-5358-z.

26. Li Z., Yang H., Zheng C., Du X., Ni H., He N., et al. Effectively improve the astaxanthin production by combined additives regulating different metabolic nodes in Phaffia rhodozyma // Frontiers in Bioengineering and Biotechnology. 2022. Vol. 9. P. 812309. DOI: 10.3389/fbioe.2021.812309.

27. Xu J., Liu D. Exploitation of genus Rhodosporidium for microbial lipid production // World Journal of Microbiology and Biotechnology. 2017. Vol. 33. P. 54. DOI: 10.1007/s11274-017-2225-6.

28. Kot A.M., Kieliszek M., Piwowarek K., Błażejak S., Mussagy C.U. Sporobolomyces and Sporidiobolus – non-conventional yeasts for use in industries // Fungal Biology Reviews. 2021. Vol. 37. P. 41–58. DOI: 10.1016/j.fbr.2021.06.001.

29. Rodríguez-Sáiz M., de la Fuente J.L., Barredo J.L. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin // Applied Microbiology and Biotechnology. 2010. Vol. 88. P. 645–658. DOI: 10.1007/s00253-010-2814-x.

30. Barredo J.L., García-Estrada C., Kosalkova K., Barreiro C. Biosynthesis of astaxanthin as a main carotenoid in the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous // Journal of Fungi. 2017. Vol. 3, no. 3. P. 44. DOI: 10.3390/jof3030044.

31. Ni H., Hong Q., Xiao A., Li L., Cai H., Su W. Characterization and evaluation of an astaxanthin over-producing Phaffia rhodozyma // Sheng Wu Gong Cheng Xue Bao (Chinese Journal of Biotechnology). 2011. Vol. 27, no. 7. P. 1065–1075.

32. Jacobsen I.H., Ledesma-Amaro R., Martinez J.L. Recombinant β-carotene production by Yarrowia lipolytica – assessing the potential of micro-scale fermentation analysis in cell factory design and bioreaction optimization // Frontiers in Bioengineering and Biotechnology. 2020. Vol. 8. P. 29. DOI: 10.3389/fbioe.2020.00029.

33. Liu M., Zhang J., Ye J., Qi Q., Hou J. Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production // ACS Synthetic Biology. 2021. Vol. 10, no. 12. P. 3551–3560. DOI: 10.1021/acssynbio.1c00480.

34. Papadaki E., Mantzouridou F.T. Natural β-carotene production by Blakeslea trispora cultivated in spanish-style green olive processing wastewaters // Foods. 2021. Vol. 10, no. 2. P. 327. DOI: 10.3390/foods10020327.

35. Yan Z., Wang C., Lin J., Cai J. Medium optimization using mathematical statistics for production of β-carotene by Blakeslea trispora and fermenting process regulation // Food Science and Biotechnology. 2013. Vol. 22. P.1667–1673. DOI: 10.1007/s10068-013-0265-8.

36. Wang Y., Chen X., Hong X., Du S., Liu C., Gong W., et al. Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora // Journal of Bioscience and Bioengineering. 2016. Vol. 122, no. 5. P. 570–576. DOI: 10.1016/j.jbiosc.2016.05.001.

37. Wang R.-Q., Chen G., Chen S.-N., Zhu H.-L., Xiong W.-N., Xu M., et al. Metabolic changes of Neurospora crassa in the presence of oleic acid for promoting lycopene production // Journal of Bioscience and Bioengineering. 2021. Vol. 132, no. 2. P. 148–153. DOI: 10.1016/j.jbiosc.2021.04.003.

38. Gmoser R., Ferreira J.A., Taherzadeh M.J., Lenartsson P.R. Post-treatment of fungal biomass to enhance pigment production // Applied Biochemistry and Biotechnology. 2019. Vol. 189. P. 160–174. DOI: 10.1007/s12010-019-02961-y.

39. Zhang Y., Navarro E., Cánovas-Márquez J.T., Almagro L., Chen H., Chen Y.Q., et al. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate b-carotene over-producing strains by genetic engineering // Microbial Cell Factories. 2016. Vol. 15. P. 99. DOI: 10.1186/s12934-016-0493-8.

40. Barbosa-Silveira A.A., Okada K., de Campos-Takaki G.M. Cultural conditions and antioxidant activity of astaxanthin produced by Mucor circinelloides f. circinelloides // International Journal of Agricultural Policy and Research. 2015. Vol. 3, no. 2. P. 60–66. DOI: 10.15739/IJAPR.027.

41. Mantzouridou F.T., Roukas T., Kotzekidou P. Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling // Biochemical Engineering Journal. 2002. Vol. 10, no. 2. P. 123–135. DOI: 10.1016/S1369-703X(01)00166-8.

42. Choi S.S., Kim G.D. Production of carotenoids by bacteria: carotenoid productivity and availability // Journal of Life Science. 2022. Vol. 32, no. 5. P. 411–419.

43. El Baky H.H.A., El Baroty G.S., Mostafa E.M. Optimization growth of Spirulina (Arthrospira) platensis in photobioreactor under varied nitrogen concentration for maximized biomass, carotenoids and lipid contents // Recent Patents on Food, Nutrition & Agriculture. 2020. Vol. 11, no. 1. P. 40–48. DOI: 10.2174/2212798410666181227125229.

44. Gris B., Sforza E., Morosinotto T., Bertucco A., la Rocca N. Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum // Journal of Applied Phycology. 2017. Vol. 29. P. 1781–1790. DOI: 10.1007/s10811-017-1133-3.

45. Asker D. Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium // Journal of Agricultural and Food Chemistry. 2017. Vol. 65, no. 41. P. 9101–9109. DOI: 10.1021/acs.jafc.7b03556.

46. Nasrabadi M.R.N., Razavi S.H. High levels lycopene accumulation by Dietzia natronolimnaea HS-1 using lycopene cyclase inhibitors in a fed-batch process // Food Science and Biotechnology. 2010. Vol. 19, no. 4. P. 899–906. DOI: 10.1007/s10068-010-0127-6.

47. Silva T.P., Paixão S.M., Alves L. Ability of Gordonia alkanivorans strain 1B for high added value carotenoids production // RSC Advances. 2016. Vol. 6. P. 58055–58063. DOI: 10.1039/C6RA08126F.

48. Korumilli T., Mishra S. Carotenoid production by Bacillus clausii using rice powder as the sole substrate: pigment analyses and optimization of key production parameters // Journal of Biochemical Technology. 2014. Vol. 5, no. 4. P. 788–794.

49. Suwaleerat T., Thanapimmetha A., Srisaiyoot M., Chisti Y., Srinophakun P. Enhanced production of carotenoids and lipids by Rhodococcus opacus PD630 // Journal of Chemical Technology and Biotechnology. 2018. Vol. 93, no. 8. P. 2160–2169. DOI: 10.1002/jctb.5554.

50. Jiang W., Sun J., Gao H., Tang Y., Wang C., Jiang Y., et al. Carotenoids production and genome analysis of a novel carotenoid producing Rhodococcus aetherivorans N1 // Enzyme and Microbial Technology. 2023. Vol. 164. P. 110190. DOI: 10.1016/j.enzmictec.2022.110190.

51. Ribeiro B.D., Barreto D.W., Coelho M.A.Z. Technological aspects of β-carotene production // Food and Bioprocess Technology. 2011. Vol. 4. P. 693–701. DOI: 10.1007/s11947-011-0545-3.

52. Ram S., Mitra M., Shah F., Tirkey S.R., Mishra S. Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges // Journal of Functional Foods. 2020. Vol. 67. P. 103867. DOI: 10.1016/j.jff.2020.103867.

53. Zhang C. Biosynthesis of carotenoids and apocarotenoids by microorganisms and their industrial potential // Progress in carotenoid research / eds L.Q. Zepka, E. JacobLopes, V.V. de Rosso. InTech, 2018. DOI: 10.5772/intechopen.79061.

54. Wei Y., Mohsin A., Hong Q., Guo M., Fang H. Enhanced production of biosynthesized lycopene via heterogenous MVA pathway based on chromosomal multiple position integration strategy plus plasmid systems in Escherichia coli // Bioresource Technology. 2018. Vol. 250. P. 382–389. DOI: 10.1016/j.biortech.2017.11.035.

55. Kim Y.-S., Lee J.-H., Kim N.-H., Yeom S.-J., Kim S.-W., Oh D.-K. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli // Applied Microbiology and Biotechnology. 2011. Vol. 90. P. 489–497. DOI: 10.1007/s00253-011-3091-z.

56. Kang C.K., Jeong S.-W., Yang J.E., Choi Y.J. High-yield production of lycopene from corn steep liquor and glycerol using the metabolically engineered Deinococcus radiodurans R1 strain // Journal of Agricultural and Food Chemistry. 2020. Vol. 68, no. 18. P. 5147–5153. DOI: 10.1021/acs.jafc.0c01024.

57. Zhao J., Li Q., Sun T., Zhu X., Xu H., Tang J., et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production // Metabolic Engineering. 2013. Vol. 17. P. 42–50. DOI: 10.1016/j.ymben.2013.02.002.

58. Yang J., Guo L. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways // Microbial Cell Factories. 2014. Vol. 13. P. 160. DOI: 10.1186/s12934-014-0160-x.

59. Rodríguez-Sáiz M., Sánchez-Porro C., de la Fuente J.L., Encarnación M., Barredo J.L. Engineering the halophilic bacterium Halomonas elongate to produce β-carotene // Applied Microbiology and Biotechnology. 2007. Vol. 77. P. 637–643. DOI: 10.1007/s00253-007-1195-2.

60. Qiang S., Su A.P., Li Y., Chen Z., Hu C.Y., Meng Y.H. Elevated β-carotene synthesis by the engineered Rhodobacter sphaeroides with enhanced CrtY expression // Journal of Agricultural and Food Chemistry. 2019. Vol. 67, no. 34. P. 9560–9568. DOI: 10.1021/acs.jafc.9b02597.

61. Li C., Li B., Zhang N., Wei N., Wang Q., Wang W., et al. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway // Journal of General and Applied Microbiology. 2019. Vol. 65, no. 3. P. 111–120. DOI: 10.2323/jgam.2018.07.001.

62. Shen H.-J., Cheng B.-Y., Zhang Y.-M., Tang L., Li Z., Bu Y.-F., et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis // Metabolic Engineering. 2016. Vol. 38. P. 180–190. DOI: 10.1016/j.ymben.2016.07.012.

63. Park S.Y., Binkley R.M., Kim W.J., Lee M.H., Lee S.Y. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity // Metabolic Engineering. 2018. Vol. 49. P. 105–115. DOI: 10.1016/j.ymben.2018.08.002.

64. Jang H.-J., Ha B.-K., Zhou J., Ahn J., Yoon S.-H., Kim S.-W. Selective retinol production by modulating the composition of retinoids from metabolically engineered E. coli // Biotechnology and Bioengineering. 2015. Vol. 112, no. 8. P. 1604–1612. DOI: 10.1002/bit.25577.

65. Schweiggert R.M., Carle R. Carotenoid production by bacteria, microalgae, and fungi // Carotenoids: nutrition, analysis and technology / eds A. Kaczor, M. Baranska. John Wiley & Sons, 2016. P. 217–240. DOI: 10.1002/9781118622223.ch12.

66. Wang S.-L., Chen D.-J., Deng B.-W., Wu X.-Z. Effects of high hydrostatic pressure on the growth and β-carotene production of Rhodotorula glutinis // Yeast. 2008. Vol. 25, no. 4. P. 251–257. DOI: 10.1002/yea.1583.

67. Frengova G.I., Beshkova D.M. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance // Journal of Industrial Microbiology and Biotechnology. 2009. Vol. 36, no. 2. P. 163–180. DOI: 10.1007/s10295-008-0492-9.

68. Xu F., Yuan Q.-P., Zhu Y. Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen vectors // Process Biochemistry. 2007. Vol. 42, no. 2. P. 289–293. DOI: 10.1016/j.procbio.2006.08.007.

69. Capelli B., Bagchi D., Cysewski G.R. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement // Nutrafoods. 2013. Vol. 12. P. 145–152. DOI: 10.1007/s13749-013-0051-5.

70. Frusciante S., Diretto G., Bruno M., Ferrante P., Pietrella M., Prado-Cabrero A., et al. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis // Proceedings of the National Academy of Sciences of the United States of America. 2014. Vol. 111, no. 33. P. 12246–12251. DOI: 10.1073/pnas.1404629111.

71. Harvey P.J., Ben-Amotz A. Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production // Algal Research. 2020. Vol. 50. P. 102002. DOI: 10.1016/j.algal.2020.102002.


Рецензия

Для цитирования:


Ядерец В.В., Карпова Н.В., Глаголева Е.В., Петрова К.С., Шибаева А.С., Джавахия В.В. Каротиноиды: обзор основных биотехнологических способов и условий получения. Известия вузов. Прикладная химия и биотехнология. 2024;14(1):41-54. https://doi.org/10.21285/achb.905. EDN: LQHTED

For citation:


Yaderets V.V., Karpova N.V., Glagoleva E.V., Petrova K.S., Shibaeva A.S., Dzhavakhiya V.V. Carotenoids: Overview of the main methods and conditions of their preparation. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(1):41-54. (In Russ.) https://doi.org/10.21285/achb.905. EDN: LQHTED

Просмотров: 601


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)