Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Влияние обработки холодной плазмой на качество и пищевую ценность растительного сырья. Обзор предметного поля

https://doi.org/10.21285/achb.914

EDN: RETQHK

Аннотация

   Холодная плазма является одной из новых технологий нетермической обработки пищевых продуктов, которая способствует увеличению срока годности пищевых продуктов растительного происхождения без отрицательного влияния на пищевую ценность и органолептические показатели.

   Цель проведенной работы состояла в анализе результатов исследований влияния обработки холодной плазмой растительного сырья на его химический состав и вторичные растительные метаболиты, а также органолептические показатели.

   В обзор включены статьи, опубликованные на английском языке за 2015–2023 годы. Поиск научной литературы по данной теме проводился по ключевым словам в библиографических базах Scopus и Web of Science. Результаты исследований показали, что влияние обработки холодной плазмой на белки, липиды, углеводы и органолептические показатели растительного сырья зависело в основном от времени воздействия, напряженности, мощности, частоты, скорости потока газа, а также количества и вида обрабатываемого растительного сырья. Благодаря высокому окислительному потенциалу и антимикробной активности технология холодной плазмы может служить эффективным способом увеличения срока годности и сохранения растительного сырья, не оказывая при этом отрицательного воздействия на органолептические, физико-химические показатели и пищевую ценность продукта. Вместе с тем для широкого промышленного внедрения существуют ограничения. Необходимо проводить дальнейшие исследования по установлению конкретных параметров обработки для разного вида сырья, а также подтверждению безопасности и возможной токсичности пищевых продуктов, обработанных холодной плазмой.

Об авторах

Л. Ч. Бурак
ООО «БЕЛРОСАКВА»
Беларусь

Леонид Чеславович Бурак, кандидат технических наук, директор

220015; ул. Пономаренко, 35а; Минск



А. Н. Сапач
ООО «БЕЛРОСАКВА»
Беларусь

Александр Николаевич Сапач, инженер-химик

220015;  ул. Пономаренко, 35а; Минск



А. П. Завалей
СООО «Ароматик»
Беларусь

Андрей Петрович Завалей, начальник лаборатории

испытательная лаборатория

222720; ул. Колхозная, 1; Дзержинск



Список литературы

1. Cullen P.J., Lalor J., Scally L., Boehm D., Milosavljević V., Bourke P., et al. Translation of plasma technology from the lab to the food industry. Plasma Processes and Polymers. 2018;15(2):1700085. DOI: 10.1002/ppap.201700085.

2. Bermudez-Aguirre D. Chapter 2 – Advances in the inactivation of microorganisms and viruses in food and model systems using cold plasma. In: Advances in cold plasma applications for food safety and preservation. San Diego: Academic Press; 2020, p. 49-91. DOI: 10.1016/B978-0-12-814921-8.00002-5.

3. Chen Y.-Q., Cheng J.-H., Sun D.-W. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: mechanisms and application advances. Critical Reviews in Food Science and Nutrition. 2020;60(16):2676-2690. DOI: 10.1080/10408398.2019.1654429.

4. Punia Bangar S., Trif M., Ozogul F., Kumar M., Chaudhary V., Vukic M., et al. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety. 2022;21(2):1958-1978. DOI: 10.1111/1541-4337.12895.

5. Ali M., Cheng J.-H., Sun D.-W. Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice. International Journal of Food Science & Technology. 2021;56(1);69-75. DOI: 10.1111/ijfs.14600.

6. Bogdanov S.A., Gorbachev A.M., Vikharev A.L., Radishev D.B., Lobaev M.A. Study of microwave discharge at high power density conditions in diamond chemical vapor deposition reactor by optical emission spectroscopy. Diamond and Related Materials. 2019;97:107407. DOI: 10.1016/j.diamond.2019.04.030.

7. Bußler S., Ehlbeck J., Schlüter O.K. Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science & Emerging Technologies. 2017;40:78-86. DOI: 10.1016/j.ifset.2016.05.007.

8. Hosseini S.M., Rostami S., Hosseinzadeh Samani B., Lorigooini Z. The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties. Food Science & Nutrition. 2020;8(2):870-883. DOI: 10.1002/fsn3.1364.

9. Kazemzadeh P., Khorram S., Mahmoudzadeh M., Ehsani A. Effect of atmospheric cold plasma (ACP) on chlorine adapted Salmonella enterica on spring onion. Letters in Applied Microbiology. 2022;75(5):1307-1318. DOI: 10.1111/lam.13799.

10. Sarangapani C., O’Toole G., Cullen P.J., Bourke P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies. 2017:44:235-241. DOI: 10.1016/j.ifset.2017.02.012.

11. Ahmadnia M., Sadeghi M., Abbaszadeh R., Ghomi Marzdashti H.R. Decontamination of whole strawberry via dielectric barrier discharge cold plasma and effects on quality attributes. Journal of Food Processing and Preservation. 2021;45(1):e15019. DOI: 10.1111/jfpp.15019.

12. Pankaj S.K., Shi H., Keener K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science & Technology. 2018;71;73-83. DOI: 10.1016/j.tifs.2017.11.007.

13. Liu C., Chen C., Jiang A., Sun X., Guan Q., Hu W. Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. Innovative Food Science & Emerging Technologies. 2020;59:102256. DOI: 10.1016/j.ifset.2019.102256.

14. Meinlschmidt P., Ueberham E., Lehmann J., Reineke K., Schlüter O., Schweiggert-Weisz U., et al. The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innovative Food Science & Emerging Technologies. 2016;38:374-383. DOI: 10.1016/j.ifset.2016.06.007.

15. Zhang Q., Cheng Z., Zhang J., Nasiru M.M., Wang Y., Fu L. Atmospheric cold plasma treatment of soybean protein isolate: Insights into the structural, physicochemical, and allergenic characteristics. Journal of Food Science. 2021;86(1):68-77. DOI: 10.1111/1750-3841.15556.

16. Sarangapani C., Patange A., Bourke P., Keener K., Cullen P.J. Recent advances in the application of cold plasma technology in foods. Annual Review of Food Science and Technology. 2018;9:609-629. DOI: 10.1146/annurev-food-030117-012517.

17. Akharume F.U., Aluko R.E., Adedeji A.A. Modification of plant proteins for improved functionality : a review. Comprehensive Reviews in Food Science and Food Safety. 2021;20(1):198-224. DOI: 10.1111/1541-4337.12688.

18. Basak S., Annapure U.S. Recent trends in the application of cold plasma for the modification of plant proteins – a review. Future Foods. 2022;5:100119. DOI: 10.1016/j.fufo.2022.100119.

19. Mollakhalili-Meybodi N., Yousefi M., Nematollahi A., Khorshidian N. Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. European Food Research and Technology. 2021;247:1579-1594. DOI: 10.1007/s00217-021-03750-w.

20. Zhang S., Huang W., Roopesh M.S., Chen L. Pretreatment by combining atmospheric cold plasma and pH-shifting to prepare pea protein concentrate powders with improved gelling properties. Food Research International. 2022;154:111028. DOI: 10.1016/j.foodres.2022.111028.

21. Dong S., Guo P., Chen Y., Chen G., Ji H., Ran Y., et al. Surface modification via atmospheric cold plasma (ACP): improved functional properties and characterization of zein film. Industrial Crops and Products. 2018;115:124-133. DOI: 10.1016/j.indcrop.2018.01.080.

22. Bu F., Nayak G., Bruggeman P., Annor G., Ismail B.P. Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chemistry. 2022;371:131135. DOI: 10.1016/j.foodchem.2021.131135.

23. Mahdavian Mehr H., Koocheki A. Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocolloids. 2020;106:105899. DOI: 10.1016/j.foodhyd.2020.105899.

24. Yu J., Chen G., Zhang Y., Zheng X., Jiang P., Ji H., et al. Enhanced hydration properties and antioxidant activity of peanut protein by covalently binding with sesbania gum via cold plasma treatment. Innovative Food Science & Emerging Technologies. 2021;68:102632. DOI: 10.1016/j.ifset.2021.102632.

25. Sun F., Xie X., Zhang Y., Ma M., Wang Y., Duan J., et al. Wheat gliadin in ethanol solutions treated using cold air plasma at atmospheric pressure. Food Bioscience. 2021;39:100808. DOI: 10.1016/j.fbio.2020.100808.

26. Sharafodin H., Soltanizadeh N. Potential application of DBD Plasma Technique for modifying structural and physicochemical properties of Soy Protein Isolate. Food Hydrocolloids. 2022;122:107077. DOI: 10.1016/j.foodhyd.2021.107077.

27. Li Z., Deng S., Chen J. Surface modification via dielectric barrier discharge atmospheric cold plasma (DBD–ACP): improved functional properties of soy protein film. Foods. 2022;11(9):1196. DOI: 10.3390/foods11091196.

28. Li Q., Shen F., He X., Xing C., Yan W., Fang Y., et al. Modification of soy protein isolate using dielectric barrier discharge cold plasma assisted by modified atmosphere packaging. Food Chemistry. 2023;401:134158. DOI: 10.1016/j.foodchem.2022.134158.

29. Venkataratnam H., Cahil O., Sarangapani C., Cullen P.J., Barry-Ryan C. Impact of cold plasma processing on major peanut allergens. Scientific Reports. 2020;10:17038. DOI: 10.1038/s41598-020-72636-w.

30. Liu Z.-W., Zhou Y.-X., Wang F., Tan Y.-C., Cheng J.-H., Bekhit A.E.-D., et al. Oxidation induced by dielectric barrier discharge (DBD) plasma treatment reduces IgG/IgE binding capacity and improves the functionality of glycinin. Food Chemistry. 2021;363:130300. DOI: 10.1016/j.foodchem.2021.130300.

31. Afshar S., Ramezan Y., Hosseini S. Physical and chemical properties of oil extracted from sesame (Sesamum indicum L.) and sunflower (Helianthus annuus L.) seeds treated with cold plasma. Journal of Food Measurement and Characterization. 2022;16:740-752. DOI: 10.1007/s11694-021-01205-0.

32. Puprasit K., Wongsawaeng D., Ngaosuwan K., Kiatkittipong W., Assabumrungrat S. Non-thermal dielectric barrier discharge plasma hydrogenation for production of margarine with low trans-fatty acid formation. Innovative Food Science & Emerging Technologies. 2020;66:102511. DOI: 10.1016/j.ifset.2020.102511.

33. Kongprawes G., Wongsawaeng D., Ngaosuwan K., Kiatkittipong W., Assabumrungrat S. Low-temperature and atmospheric pressure plasma for palm biodiesel hydrogenation. Scientific Reports. 2021;11:14224. DOI: 10.1038/s41598-021-92714-x.

34. Wang T., Li N., Luo S., Wang L., Jiang L., Yu D., et al. Catalyst activation by cold plasma technology and its effect on isomerization of safflower seed oil. Innovative Food Science & Emerging Technologies. 2022;76:102942. DOI: 10.1016/j.ifset.2022.102942.

35. Bulbul V.J., Bhushette P.R., Zambare R.S., Deshmukh R.R., Annapure U.S. Effect of cold plasma treatment on Xanthan gum properties. Polymer Testing. 2019;79:106056. DOI: 10.1016/j.polymertesting.2019.106056.

36. Joy K.J., Kalaivendan R.G.T., Eazhumalai G., Kahar S.P., Annapure U.S. Effect of pin-to-plate atmospheric cold plasma on jackfruit seed flour functionality modification. Innovative Food Science & Emerging Technologies. 2022;78:103009. DOI: 10.1016/j.ifset.2022.103009.

37. Sun X., Saleh A.S.M., Sun Z., Ge X., Shen H., Zhang Q., et al. Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments. LWT. 2022;153:112483. DOI: 10.1016/j.lwt.2021.112483.

38. Zare L., Mollakhalili-Meybodi N., Fallahzadeh H., Arab M. Effect of atmospheric pressure cold plasma (ACP) treatment on the technological characteristics of quinoa flour. LWT. 2022;155:112898. DOI: 10.1016/j.lwt.2021.112898.

39. Zhu H., Han Z., Cheng J.-H., Sun D.-W. Modification of cellulose from sugarcane (Saccharum officinarum) bagasse pulp by cold plasma: dissolution, structure and surface chemistry analysis. Food Chemistry. 2022;374;131675. DOI: 10.1016/j.foodchem.2021.131675.

40. Mehta D., Yadav K., Chaturvedi K., Shivhare U.S., Yadav S.K. Impact of cold plasma on extraction of polyphenol from de-oiled rice and corn bran: Improvement in extraction efficiency, in vitro digestibility, antioxidant activity, cytotoxicity and anti-inflammatory responses. Food and Bioprocess Technology. 2022;15:1142-1156. DOI: 10.1007/s11947-022-02801-8.

41. Silveira M.R., Coutinho N.M., Esmerino E.A., Moraes J., Fernandes L.M., Pimentel T.C., et al. Guava-flavored whey beverage processed by cold plasma technology: bioactive compounds, fatty acid profile and volatile compounds. Food Chemistry. 2019;279:120-127. DOI: 10.1016/j.foodchem.2018.11.128.

42. Coutinho N.M., Silveira M.R., Fernandes L.M., Moraes J., Pimentel T.C., Freitas M.Q., et al. Processing chocolate milk drink by lowpressure cold plasma technology. Food Chemistry. 2019;278:276-283. DOI: 10.1016/j.foodchem.2018.11.061.

43. Beyrer M., Pina-Perez M.C., Martinet D., Andlauer W. Cold plasma processing of powdered Spirulina algae for spore inactivation and preservation of bioactive compounds. Food Control. 2020;118:107378. DOI: 10.1016/j.foodcont.2020.107378.

44. Mehta D., Yadav S.K. Impact of atmospheric non-thermal plasma and hydrothermal treatment on bioactive compounds and microbial inactivation of strawberry juice: a hurdle technology approach. Food Science and Technology International. 2020;26(1):3-10. DOI: 10.1177/1082013219865360.

45. Bao Y., Reddivari L., Huang J.-Y. Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innovative Food Science & Emerging Technologies. 2020;65:102445. DOI: 10.1016/j.ifset.2020.102445.

46. Bao Y., Reddivari L., Huang J.-Y. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT. 2020;133:109970. DOI: 10.1016/j.lwt.2020.109970.

47. Rodriguez Ó., Rodrigues S., Fernandes F.A.N. Effect of glow discharge plasma technology on the phenolic content and antioxidant capacity of four tropical juices with different phenolic composition. Journal of Food Processing and Preservation. 2022;46(1):e16110. DOI: 10.1111/jfpp.16110.

48. Qin P., Wang T., Luo Y. A review on plant-based proteins from soybean: health benefits and soy product development. Journal of Agriculture and Food Research. 2022;7:100265. DOI: 10.1016/j.jafr.2021.100265.

49. Laroque D.A., Seó S.T., Valencia G.A., Laurindo J.B., Carciofi B.A.M. Cold plasma in food processing: design, mechanisms, and application. Journal of Food Engineering. 2022;312:110748. DOI: 10.1016/j.jfoodeng.2021.110748.

50. Okyere A.Y., Bertoft E., Annor G.A. Modification of cereal and tuber waxy starches with radio frequency cold plasma and its effects on waxy starch properties. Carbohydrate Polymers. 2019;223:115075. DOI: 10.1016/j.carbpol.2019.115075.

51. Oner M.E., Gultekin Subasi B., Ozkan G., Esatbeyoglu T., Capanoglu E. Efficacy of cold plasma technology on the constituents of plant-based food products: principles, current applications, and future potentials. Food Research International. 2023;172:113079. DOI: 10.1016/j.foodres.2023.113079.

52. Warne G.R., Williams P.M., Pho H.Q., Tran N.N., Hessel V., Fisk I.D. Impact of cold plasma on the biomolecules and organoleptic properties of foods : a review. Journal of Food Science. 2021;86(9):3762-3777. DOI: 10.1111/1750-3841.15856.

53. Pohl P., Dzimitrowicz A., Cyganowski P., Jamroz P. Do we need cold plasma treated fruit and vegetable juices? A case study of positive and negative changes occurred in these daily beverages. Food Chemistry. 2022;375:131831. DOI: 10.1016/j.foodchem.2021.131831.

54. Dzimitrowicz A., Jamroz P., Cyganowski P., Bielawska-Pohl A., Klimczak A., Pohl P. Application of cold atmospheric pressure plasmas for high-throughput production of safe-to-consume beetroot juice with improved nutritional quality. Food Chemistry. 2021;336:127635. doi: 10.1016/j.foodchem.2020.127635.

55. Sruthi N.U., Josna K., Pandiselvam R., Kothakota A., Gavahian M., Mousavi Khaneghah A. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food : a comprehensive review. Food Chemistry. 2022; 368:130809. DOI: 10.1016/j.foodchem.2021.130809.


Рецензия

Для цитирования:


Бурак Л.Ч., Сапач А.Н., Завалей А.П. Влияние обработки холодной плазмой на качество и пищевую ценность растительного сырья. Обзор предметного поля. Известия вузов. Прикладная химия и биотехнология. 2024;14(2):173-183. https://doi.org/10.21285/achb.914. EDN: RETQHK

For citation:


Burak L.Ch., Sapach A.N., Zavaley A.P. Effect of cold plasma treatment on the quality and nutritional value of plant materials. Scoping review. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(2):173-183. (In Russ.) https://doi.org/10.21285/achb.914. EDN: RETQHK

Просмотров: 268


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)