Properties of cellulose nitrates produced by nitration of bacterial cellulose using mixed sulfuric-nitric acids
https://doi.org/10.21285/achb.915
EDN: OKCVTR
Abstract
The study set out to investigate the chemical functionalization of bacterial cellulose as an alternative means of satisfying the high demand for nano-sized cellulose nitrates.
Using a Medusomyces gisevii Sa-12 symbiotic culture as a microbial producer, bacterial cellulose having a polymerization degree of 3950 was obtained on a synthetic glucose medium. Nitration was carried out using mixed sulfuric-nitric acids differing in their water content, followed by stabilization of the synthesized bacterial cellulose nitrates. Subject to a varying water content (14, 16 and 20 %) in the nitrating mixture, the obtained bacterial cellulose nitrates exhibited a nitrogen mass content of 8.68–11.56 %, a solubility in alcohol-ether mixture of 16.5–91.0 % and a viscosity of 32–255 mPa×s. The bacterial cellulose nitrate fibers were shown to have a nanoscale nature. Coupled thermogravimetric and differential thermal analyses revealed the bacterial cellulose nitrates to have a high chemical purity and energy content. FTIR spectroscopy confirmed the high quality of the bacterial cellulose based on the presence of basic functional groups characteristic of conventional cellulose: 3371, 2943, 1633, 1428, 1371, 1163, and 1112 cm-1. According to their infrared spectra, the detected basic functional groups corroborate that the synthesized products are low-substituted cellulose nitrate esters: 1660–1643, 1282-1276, 847–837, 752–749, and 691–690 cm-1. The relationship between the properties of the synthesized bacterial cellulose nitrates and the water mass content in mixed sulfuric-nitric acids is shown to have a complex nature.
About the Authors
P. A. GorbatovaRussian Federation
Polina A. Gorbatova, Laboratory Assistant, Student
659322; 1, Sotsialisticheskaya St.; 659305; 27, Trofimov St.; Biysk
A. A. Korchagina
Russian Federation
Anna A. Korchagina, Cand. Sci. (Engineering), Senior Research Scientist
659322; 1, Sotsialisticheskaya St.; Biysk
Yu. A. Gismatulina
Russian Federation
Yulia A. Gismatulina, Cand. Sci. (Engineering), Senior Research Scientist
659322; 1, Sotsialisticheskaya St.; Biysk
N. A. Shavyrkina
Russian Federation
Nadezhda A. Shavyrkina, Cand. Sci. (Engineering), Senior Research Scientist, Associate Professor
659322; 1, Sotsialisticheskaya St.; 659305; 27, Trofimov St.; Biysk
V. V. Budaeva
Russian Federation
Vera V. Budaeva, Cand. Sci. (Chemistry), Associate Professor, Head of Laboratory, Lead Research Scientist
659322; 1, Sotsialisticheskaya St.; Biysk
References
1. Andriani D., Apriyana A.Y., Karina M. The optimization of bacterial cellulose production and its applications : a review. Cellulose. 2020;27:6747-6766. DOI: 10.1007/s10570-020-03273-9.
2. Rogozhin V.V., Rogozhin U.V. Medusomyces gisevii: structure, function, and use. Proceedings of Universities. Applied Chemistry and Biotechnology. 2017;7(4):24-35. (In Russian). DOI: 10.21285/2227-2925-2017-7-4-24-35. EDN: YMQFOA.
3. Hu W., Chen S., Yang J., Li Z., Wang H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydrate Polymers. 2014;101:1043-1060. DOI: 10.1016/j.carbpol.2013.09.102.
4. Rahman M.S., Hasan M.S., Nitai A.S., Nam S., Karmakar A.K., Ahsan M.S., et al. Recent developments of carboxymethyl cellulose. Polymers. 2021;13(8):1345. DOI: 10.3390/polym13081345.
5. Alharbi N.D., Guirguis O.W. Macrostructure and optical studies of hydroxypropyl cellulose in pure and Nano-composites forms. Results in Physics. 2019;15:102637. DOI: 10.1016/j.rinp.2019.102637.
6. Tan W., Zhang J., Zhao X., Li Q., Dong F., Guo Z. Preparation and physicochemical properties of antioxidant chitosan ascorbate/methylcellulose composite films. International Journal of Biological Macromolecules. 2020;146:53-61. DOI: 10.1016/j.ijbiomac.2019.12.044.
7. Nursyafiqah J.R., Siti Hasnawati J., Jahwarhar Izuan A.R., Mohd Nor Faiz N., Ong K.K., Wan Md Zin W.Y. Response surface methodology for optimization of nitrocellulose preparation from nata de coco bacterial cellulose for propellant formulation. Heliyon. 2024;10(4):e25993. DOI: 10.1016/j.heliyon.2024.e25993.
8. Siti Hasnawati J., Nursyafiqah J.R., Noor Aisyah A.S., Siti Aminah M.N., Ong K.K., Wan Md Zin W.Y. Conversion of bacterial cellulose to cellulose nitrate with high nitrogen content as propellant ingredient. Solid State Phenomena. 2021;317:305-311. DOI: 10.4028/www.scientific.net/SSP.317.305.
9. Nursyafiqah J.R., Siti Hasnawati J., Ong K.K., Wan Md Zin W.Y. Preliminary study on the effect of sulphuric acid to nitric acid mixture composition, temperature and time on nitrocellulose synthesis based Nata de Coco. Solid State Phenomena. 2021;317:312-319. DOI: 10.4028/www.scientific.net/SSP.317.312.
10. Huang J., Zhao M., Hao Y., Wei Q. Recent advances in functional bacterial cellulose for wearable physical sensing applications. Advanced Materials Technologies. 2022;7(1):2100617. DOI: 10.1002/admt.202100617.
11. Chandel N., Jain K., Jain A., Raj T., Patel A.K., Yang Y.-H., et al. The versatile world of cellulose-based materials in healthcare: from production to applications. Industrial Crops and Products. 2023;201:116929. DOI: 10.1016/j.indcrop.2023.116929.
12. Cao X., Nan F., Zheng Y., Chen L., He W. Hygroscopicity of nitrocellulose with different nitrogen content. Propellants, Explosives, Pyrotechnics. 2024;49(3):e202300035. DOI: 10.1002/prep.202300035.
13. Chen L., Cao X., Gao J., Wang Y., Zhang Y., Liu J., et al. Synthesis of 3D porous network nanostructure of nitrated bacterial cellulose gel with eminent heat-release, thermal decomposition behaviour and mechanism. Propellants, Explosives, Pyrotechnics. 2021;46(8):1292-1303. DOI: 10.1002/prep.202100010.
14. Shavyrkina N.A., Skiba E.A., Kazantseva A.E., Gladysheva E.K., Budaeva V.V., Bychin N.V., et al. Static culture combined with aeration in biosynthesis of bacterial cellulose. Polymers. 2021;13(23):4241. DOI: 10.3390/polym13234241.
15. Korchagina A.А., Budaeva V.V., Aleshina L.A., Lyukhanova I.V., Bychin N.V., Sakovich G.V. Modification of plant cellulose and its synthetic analogue into low-substituted esterification products. ChemChemTech. 2022;65(6):64-74. (In Russian). DOI: 10.6060/ivkkt.20226506.6598. EDN: QGXUCZ.
16. Budaeva V.V., Gismatulina Y.A., Mironova G.F., Skiba E.A., Gladysheva E.K., Kashcheyeva E.I., et al. Bacterial nanocellulose nitrates. Nanomaterials. 2019;9(12):1694. DOI: 10.3390/nano9121694.
17. Sun D.-P., Ma B., Zhu C.-L., Liu C.-S., Yang J.-Z. Novel nitrocellulose made from bacterial cellulose. Journal of Energetic Materials. 2010;28(2):85-97. DOI: 10.1080/07370650903222551.
18. Liu J. Nitrate esters chemistry and technology. Singapore: Springer; 2019, 684 p. DOI: 10.1007/978-981-13-6647-5.
19. Gismatulina Yu.A. Promising energetic polymers from nanostructured bacterial cellulose. Polymers. 2023;15(9):2213. DOI: 10.3390/polym15092213.
20. Singhania R.R., Patel A.K., Tseng Y.-S., Kumar V., Chen C.-W., Haldar D., et al. Developments in bioprocess for bacterial cellulose production. Bioresource Technology. 2022;344:126343. DOI: 10.1016/j.biortech.2021.126343.
21. Wahid F., Huang L.-H., Zhao X.-Q., Li W.-C., Wang Y.-Y. Bacterial cellulose and its potential for biomedical applications. Biotechnology Advances. 2021;53:107856. DOI: 10.1016/j.biotechadv.2021.107856.
22. Trache D., Khimeche K., Mezroua A., Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. Journal of Thermal Analysis and Calorimetry. 2016;124:1485-1496. DOI: 10.1007/s10973-016-5293-1.
23. Tarchoun A.F., Trache D., Klapötke T.M., Selmani A., Saada M., Chelouche S., et al. New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: their synthesis, characterization, and non-isothermal decomposition kinetics. New Journal of Chemistry. 2021;45(11):5099-5113. DOI: 10.1039/d0nj05484d.
24. Duan X., Li Z., Shi X., Pei C. Giant panda feces: potential raw material in preparation of nitrocellulose for propellants. Cellulose. 2023;30:3127-3140. DOI: 10.1007/s10570-023-05054-6.
25. Tarchoun A.F., Trache D., Klapötke T.M., Chelouche S., Derradji M., Bessa W., et al. A promising energetic polymer from Posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling. Macromolecular Chemistry and Physics. 2019;220(22):1900358. DOI: 10.1002/macp.201900358.
26. Gao X., Jiang L., Xu Q., Wu W.-Q., Mensah R.A. Thermal kinetics and reactive mechanism of cellulose nitrate decomposition by traditional multi kinetics and modeling calculation under isothermal and non-isothermal conditions. Industrial Crops and Products. 2020;145:112085. DOI: 10.1016/j.indcrop.2020.112085.
27. Duan X., Li Z., Wu B., Shen J., Pei C. Preparation of nitrocellulose by homogeneous esterification of cellulose based on ionic liquids. Propellants, Explosives, Pyrotechnics. 2023;48(2):e202200186. DOI: 10.1002/prep.202200186.
28. Tarchoun A.F., Trache D., Klapötke T.M., Krumm B., Mezroua A., Derradji M., et al. Design and characterization of new advanced energetic biopolymers based on surface functionalized cellulosic materials. Cellulose. 2021;28:6107-6123. DOI: 10.1007/s10570-021-03965-w.
Review
For citations:
Gorbatova P.A., Korchagina A.A., Gismatulina Yu.A., Shavyrkina N.A., Budaeva V.V. Properties of cellulose nitrates produced by nitration of bacterial cellulose using mixed sulfuric-nitric acids. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(2):236-244. (In Russ.) https://doi.org/10.21285/achb.915. EDN: OKCVTR