Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

EFFECTS OF CULTIVATION CONDITIONS ON THE BIOSYNTHESIS OF BACTERIAL NANOCELLULOSE

https://doi.org/.org/10.21285/2227-2925-2018-8-3-33-40

Abstract

This paper describes conditions for the cultivation of bacterial nanocellulose using various primary producers. Research into parameters determining a high yield in the production of bacterial nanocellulose is highly relevant due to an increased demand in this product in various industries. Key parameters that affect the growth of cellulose-synthesizing bacteria and the biosynthesis of bacterial nanocellulose include the following: the concentration of the carbon source in the nutrient solution; aeration; cultivation temperature; active acidity level. The concentration of reducing substances in the nutrient solution can range from 6 to 100 g/l. The concentration of dissolved oxygen in the nutrient solution can be considered as a limiting factor for all cellulose-synthesizing microorganisms. It is shown that the temperature range for the bacterial nanocellulose biosynthesis can vary from 25 to 33°C for various primary producers. PH values that provide a maximal yield of bacterial nanocellulose are determined to range from 4 to 6.5 for various primary producers. The literature review has proven the importance of a case-by-case approach when selecting cultivation conditions for every primary producer so as to maximize the bacterial nanocellulose yield.

About the Author

Е. К. Gladysheva
Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS)
Russian Federation


References

1. Lin S.-P., Calvar I.L., Catchmark J.M., Liu J.-R., Demirci A., Cheng K.-C. Biosynthesis, production and applications of bacterial cellulose // Cellulose. 2013. V. 20, N 5. P. 2191-2219. DOI 10.1007/s10570-013-9994-3.

2. Lee K.-Y., Buldum G., Mantalaris A., Bismarck. More than Meets the Eye in Bacterial Cellulose: Boisynthesis, Bioprocessing, and Applications in Advanced Fiber Composites // Macromolecular Bioscience. 2014. V. 14, N 1. P. 10-32. DOI: 10.1002/mabi.201300298

3. Lestari P., Elfrida N., Suryani A., Suryadi Y. Study on the Production of Bacterial Cellulose from Acetobacter xylinum using Agro-Waste // Jordan Journal of Biological Sciences. 2014, V. 7, N 1. P. 75-80. DOI: 10.12816/0008218

4. Masaoka, S., Ohe T., Sakota N. Production of cellulose from glucose by Acetobacter xylinum // Journal of Fermentation and Bioengineering. 1993. V. 7, N 1. P. 18-22. https://doi.org/10.1016/0922-338X(93)90171-4

5. Keshk, S., Sameshima K. Evaluation of different carbon sources for bacterial cellulose production // African Journal of Biotechnology. 2005. V. 4, N 6. P. 478-482.

6. Son H.J., Kim H.G., Kim K.K., Kim H.S., Kim Y.G., Lee S.J. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions // Biore-source technology. 2003. V. 86, N 3. P. 215-219. https://doi.org/10.1016/S0960-8524(02)00176-1

7. Goh W.N., Rosma A., Kaur B., Fazilah A., Karim A.A., Rajeev B. Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose // International Food Research Journal. 2012. V. 19, N 1. P. 109-117.

8. Юркевич Д.И., Кутышенко В.П. Медузомицет (Чайный гриб): научная история, состав, особенности физиологии и метаболизма // Биофизика. 2002. N 6. С. 1116-1129.

9. Shirai A., Takahashi M., Kaneko H., Nishimura S., Ogawa M., Nishi N., Tokura S. Biosynthesis of a novel polysaccharide by Acetobacter xylinum // International Journal of Biological Macromolecules. 1994. N 16. P. 297-300.

10. Aloni Y., Delmer D.P., Benziman M. Achievement of high rates of in vitro synthesis of 1, 4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor // Proceedings of the National Academy of Sciences of the United States of America. 1982. V. 79, N 21. P. 6448-6452.

11. Kouda T., Naritomi T., Yano H., Yoshinaga F. Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture // Journal of Bioscience and Bioengineering. 1997. V. 84, N 2. P. 124-137. https://doi.org/10.1016/S0922-338X(97)82540-8

12. Song H.-J., Li H., Seo J.-H., Kim M.-J., Kim S.-J. Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes // Korean Journal of Chemical Engineering. 2009. V. 26, N 1. P. 141-146. doi: 10.1007/s11814-009-0022-0

13. Li H., Kim S.J., Lee Y.W., Kee C., Oh I. Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes // Korean Journal of Chemical Engineering. 2011. V. 28, N 11. P. 2306-2311.https://doi.org/10.1007/s11814-011-0111-8

14. Kim S., Li H., Oh I., Kee C., Kim M. Effect of viscosity inducing factors on oxygen transfer in production culture of bacterial cellulose // Korean Journal of Chemical Engineering. 2012. V. 29, N 6. P. 792-797. DOI https://doi.org/10.1007/s11814-011-0245-8

15. Tantratian S., Tammarate P., Krusong W., Bhattarakosol P., Phunsri A. Effect of dissolved oxygen on cellulose production by Acetobacter sp. // Journal Sciences Research Chula University. 2005. V. 30, N 2. P. 179-186.

16. Hwang J.W., Yang Y.K., Hwang J.K., Pyun Y.R., Kim Y.S. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture // Journal Of Bioscience And Bioengineering. 1999. V. 88, N 2. P. 183-188. https://doi.org/10.1016/S1389-1723(99)80199-6

17. Chao Y., Sugano Y., Shoda M. Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor // Applied Microbiology and Biotechnology. 2001. V. 55, N 6. P. 673-679. DOI: 10.1002/(SICI)1097-0290(20000505)68:3<345::AID-BIT13>3.0.CO;2-M

18. Son H.J., Heo M.S., Kim Y.G., Lee S.J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter // Biotechnology and Applied Biochemistry. 2001. V. 33, N 1. P. 1-5. DOI: 10.1042/BA20000065

19. Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum: II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose // Journal of Biochemistry. 1954. V. 58, N 2. P. 345-352.

20. Wong H.C., Fear A.L., Calhoon R.D., Eichinger G.H., Mayer R., Amikam D., Benziman M., Gelfand D.H., Meade J.H., Emerick A.W., Bruner R., Ben-Bassat A., Tal R. Genetic organization of the cellulose synthase operon in Acetobacter xylinum // Proceedings of the National Academy of Sciences of the United States of America. 1990. V. 87, N 2. P. 8130-8134.

21. Hirai A., Tsuji M., Horii F. Culture conditions producing structure entities composed of cellulose I and II in bacterial cellulose // Cellulose. 1997. V. 4, N 3. P. 239-245. https://doi.org/10.10 23/A:1018439907396

22. Zeng, X., Liu J., Chen J., Wang Q., Li Z., Wang H. Screening of the common culture conditions affecting crystallinity of bacterial cellulose // Journal of Industrial Microbiology and Biotechnology. 2011. V. 38, N 12. P. 1993-1999.

23. Penttila P.A., Sugiyma J., Imai T. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases // Carbohydrate Polymers. 2016. V. 136. P. 656-666. https://doi.org/10.1016/j.carbpol.2015.09.082

24. Coban E.P., Biyik H. Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium // African Journal of Microbiology Research. 2011. V. 5, N 9. P. 1037-1045. https://doi.org/10.5897/AJMR11.008

25. Jonas R., Farah L.F. Production and application of microbial cellulose // Polymer Degradation and Stability. 1998. V. 59, N 1-3. P. 101-106. https://doi.org/10.1016/S0141-3910(97)00197-3

26. Bacterial nanocellulose: a sophisticated multifunctional material / ed. by M. Gama, P. Gatenholm, D. Klemm. 2013. 306 p.

27. Klemn D., Schumann D., Udhart U., Marsch S. Bacterial synthesis cellulose-artificial blood vessels for microsurgery // Progress in Polymer Science. 2001. V. 26, N 9. P. 1561-1603. https://doi.org/10.1016/S0079-6700(01)00021-1

28. Jagannath A., Kalaiselvan A., Manjunatha S.S., Raju P.S., Bawa A.S. The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum // World Journal of Microbiology and Biotechnology. 2008. V. 24, N 11. P. 2593-2599. https://doi.org/10.1007/s11274-008-9781-8

29. Zeng, X., Liu J., Chen J., Wang Q., Li Z., Wang H. Screening of the common culture conditions affecting crystallinity of bacterial cellulose // Journal of Industrial Microbiology and Biotechnology. 2011. V. 38, N 12. P. 1993-1999. https://doi.org/10. 1007/s10295-011-0989-5

30. Noro N., Sugano Y., Shoda M. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum // Applied Microbiology and Biotechnology. 2004. V. 64, N 2. P. 199-205. https://doi.org/10.1007/s00253-003-1457-6

31. Pourramezan G.Z., Roayaei A.M., Qezelbash Q.R. Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2 // Biotechnology. 2009. V. 8, N 1. P. 150-154. DOI: 10.3923/biotech.2009.150.154

32. Khairul A.Z., Norhayati P., Ida I.M. Monitoring the Effect of pH on Bacterial Cellulose Production and Acetobacter xylinum 0416 Growth in a Rotary Discs Reactor // Arabian Journal for Science and Engineering. 2015. V. 40, N 7. P. 1881-1885. DOI 10.1007/s13369-015-1712-z


Review

For citations:


Gladysheva Е.К. EFFECTS OF CULTIVATION CONDITIONS ON THE BIOSYNTHESIS OF BACTERIAL NANOCELLULOSE. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(3):33-40. (In Russ.) https://doi.org/.org/10.21285/2227-2925-2018-8-3-33-40

Views: 182


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)