Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

IDENTIFICATION OF A LIMITING FACTOR IN THE REDUCTION OF IODONITROTETRAOLIUM CHLORIDE BY A BACTERIAL CELL SUSPENSION IN A PHYSIOLOGICAL SOLUTION

https://doi.org/.org/10.21285/2227-2925-2018-8-3-61-69

Abstract

In this work, we set out to investigate the role of diffusion in the microbial reduction of iodonitrotetraolium chloride (INT) using the methods of chemical kinetics. In environmental studies, re-searchers use the intensity of tetrazolium salt reduction to evaluate an overall viability of microorganisms and their communities. In particular, tetrazolium salts could be used as an indicator of the corrosive activity of bacteria. However, it is known that the reduction of tetrazolium salts can only register the response of those microbial community parts that are capable of actively reducing these substances. Therefore, research into the causes of a wide-range reduction ability of microorganisms towards tetrazolium salts can improve the objectivity of environmental and other studies, including the study of the corrosion activity of organotrophic bacteria. The kinetic parameters of INT reduction by Clostridium spp., Proteus vulgaris and Escherichia coli suspensions have been determined. On the basis of the values of the pre-exponential factor in the Arrhenius equation, an assumption is made that the reaction is characterized by a diffusion-controlled character.

About the Authors

A. A. Kalinina
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


A. S. Makedoshin
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


S. Y. Radostin
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


T. N. Sokolova
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


E. P. Komova
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


V. R. Kartashov
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation


References

1. Kuhn R., Jerchel D. Reduktion von Tetrazoliumsalzen durch Bakterien, gärende Hefe und keimende Samen // Berichte der Deutschen Chemischen Gesellschaft. 1941. V. 74, N 6. P. 949-952. DOI: 10.1002/cber.19410740615

2. Bhupathirajua V.K., Hernandezb M., Landfeara D., Alvarez-Cohen L. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria // Journal of Microbiological Methods. 1999. V. 37, N 3. P. 231-243.

3. Fonseca A.C., Summers R.S., Hernandez M.T. Comparative measurements of microbial activity in drinking water biofilters // Water Research. 2001. V. 35, N 16. P. 3817-3824. DOI: 10.1016/S0043-1354(01)00104-X

4. Relexans J.C. Measurement of the respiratory electron transport system (ETS) activity in marine sediments: state-of-the-art and interpretation. II. Significance of ETS activity data // Marine Ecology Progress Series. 1996. V. 136. P. 289-301. DOI: 10.3354/meps136289

5. Rodriguez G.G. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria // Applied Environmental Microbiology. 1992. V. 58, N 6. Р. 1801-1808.

6. Sabaeifard P., Abdi-Ali A., Reza Soudi M., Dinarvand K. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method // Journal of Microbiological Methods. 2014. V. 105. P. 134-140.

7. Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration // Applied Environmental Microbiology. 1978. V. 36, N 6. P. 926-935.

8. Altman F.P. Tetrazolium salts and formazans. Gustav Fisher Verlag. Stuttgart, 1976. 51 p.

9. Thorm S. M., Horobin R.W., Seidler E., Barer M.R. Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity // Journal of Applied Bacteriology. 1993. V. 74, N 4. P. 433-443. DOI: 10.1111/j.1365-2672.1993.tb05151.x

10. Horobin R. W. Selection of optimum tetrazolium salts for use in histochemistry: the value of structurestaining correlations // The Histochemical Journal. 1982. V. 14, N 2. P. 301-310. DOI: 10.1007/BF01041222

11. Chieco P. Improvement in soluble dehydrogenase histochemistry by nitroblue tetrazolium preuptake in sections: a qualitative and quantitative study // Stain Technology. 1984. V. 59, N 4. P. 201-211. DOI: 10.3109/10520298409113857

12. Seidler E. The Tetrazolium-Fonnazan System: Design and Histochemistry. New York: G. Fischer. Stuttgart, 1991. 79 p.

13. Smith J.J., McFeters G.A. Mechanisms of INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride), and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli K-12 // Journal of Microbiological Methods. 1997. V. 29, N 3. P. 161-175.

14. Hatzinger P.B., Palmer Р., Smith R.L., Peñarrieta C.T., Yoshinari T. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria // Journal of Microbiological Methods. 2003. V. 52, N 1. P. 47-58.

15. Радостин С.Ю., Калинина А.А., Македошин А.С., Соколова Т.Н., Кузина О.В., Карташов В.Р. Восстановление йоднитротетразолия клетками бактерий как метод оценки их коррозионной активности // Коррозия: материалы, защита. 2015. N 11. С. 45-48.

16. Дикерсон Р., Грей Г., Хейт Дж. Основные законы химии. М.: Мир, 1982. 652 с.


Review

For citations:


Kalinina A.A., Makedoshin A.S., Radostin S.Y., Sokolova T.N., Komova E.P., Kartashov V.R. IDENTIFICATION OF A LIMITING FACTOR IN THE REDUCTION OF IODONITROTETRAOLIUM CHLORIDE BY A BACTERIAL CELL SUSPENSION IN A PHYSIOLOGICAL SOLUTION. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(3):61-69. (In Russ.) https://doi.org/.org/10.21285/2227-2925-2018-8-3-61-69

Views: 201


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)