Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Thermal expansion and ionic conductivity of K5Pb0,5Zr1,5 (MoO4)6

https://doi.org/10.21285/achb.939

EDN: GWYOKH

Abstract

The present study is aimed at the directed synthesis of a new ternary molybdate K5Pb0.5Zr1.5(MoO4)6 isostructural to K5Pb0.5Hf1.5(MoO4)6 by solid-phase reaction within the temperature range of 350–550 °С (for 100 h). The compound crystallizes in the rhombohedral system with the space group R3̅  and unit cell parameters of a = 10.6604(2) Å, c = 37.9769(9) Å, and V = 3737.6(2) Å3. The structure was refined using the Rietveld method. The atomic positions were refined in the isotropic approximation, with soft constraints on Mo–O distances and O–Mo–O bond angles. The crystal structure constitutes a 3D scaffold comprising PbO6 and ZrO6 octahedrons and MoO4 tetrahedrons sharing oxygen vertices. The thermal expansion of K5Pb0.5Zr1.5(MoO4)6 was studied via high-temperature X-ray powder diffraction. The calculated thermal expansion coefficients along both crystallographic axes remain positive over the entire temperature range. In this case, the value of αa remains constant, while that of αc increases with rising temperature. The obtained ternary molybdate belongs to materials with high thermal expansion (αV = 60×10-6 °С-1). The significant anisotropy in the crystallographic direction c can be attributed to the soft K–O and Pb-O bonds. The electrical conductivity of K5Pb0.5Zr1.5(MoO4)6 was studied via impedance spectroscopy within the temperature range of 30–500 °С; at 500 °С, the conductivity amounted to 0.7×10-4 S/cm, with Ea = 0.59 eV.

About the Authors

E. V. Kovtunets
Baikal Institute of Nature Management SB RAS
Russian Federation

Evgeniy V. Kovtunets, Researcher

6, Sakhyanova St., Ulan-Ude, 670047



T. S. Spiridonova
Baikal Institute of Nature Management SB RAS
Russian Federation

Tatyana S. Spiridonova, Cand. Sci. (Chemistry), Senior Researcher

6, Sakhyanova St., Ulan-Ude, 670047



Yu. L. Tushinova
Baikal Institute of Nature Management SB RAS
Russian Federation

Yunna L. Tushinova, Cand. Sci. (Chemistry), Associate Professor, Researcher

6, Sakhyanova St., Ulan-Ude, 670047



A. V. Logvinova
Baikal Institute of Nature Management SB RAS
Russian Federation

Alexandra V. Logvinova, Engineer

6, Sakhyanova St., Ulan-Ude, 670047



T. T. Bazarova
Baikal Institute of Nature Management SB RAS
Russian Federation

Tsyrendyzhit T. Bazarova, Cand. Sci. (Chemistry), Leading Enginee

6, Sakhyanova St., Ulan-Ude, 670047



B. G. Bazarov
Baikal Institute of Nature Management SB RAS
Russian Federation

Bair G. Bazarov, Dr. Sci. (Physics and Mathematics), Associate Professor, Leading Researcher

6, Sakhyanova St., Ulan-Ude, 670047



References

1. Kireeva N., Tsivadze A.Yu. Oxide ceramics of A2M3O12 family with negative and close-to-zero thermal expansion coefficients: machine learning-based modeling of functional characteristics. Journal of Alloys and Compounds. 2024;990:174356. DOI: 10.1016/j.jallcom.2024.174356.

2. Marinkovic B.A., Pontón P.I., Romao C.P., Moreira T., White M.A. Negative and near-zero thermal expansion in A2M3O12 and related ceramic families: a review. Frontiers in Materials. 2021;8:741560. DOI: 10.3389/fmats.2021.741560.

3. Romao C.P., Perras F.A., Werner-Zwanziger U., Lussier J.A., Miller K.J., Calahoo C.M., et al. Zero thermal expansion in ZrMgMo3O12: NMR crystallography reveals origins of thermoelastic properties. Chemistry of Materials. 2015;27(7):2633-2646. DOI: 10.1021/acs.chemmater.5b00429.

4. Zi Y., Cun Y., Bai X., Xu Z., Haider A.A., Qiu J., et al. Negative lattice expansion-induced upconversion luminescence thermal enhancement in novel Na2MoO4:Yb3+,Er3+ transparent glass ceramics for temperature sensing applications. Journal of Materials Chemistry C. 2023;11(4):1541- 1549. DOI: 10.1039/D2TC05009A.

5. Zolotova E.S., Solodovnikov S.F., Solodovnikova Z.A., Yudin V.N., Uvarov N.F., Sukhikh A.S. Selection of alkali polymolybdates as fluxes for crystallization of double molybdates of alkali metals, zirconium or hafnium, revisited crystal structures of K2Mo2O7, K2Mo3O10, Rb2Mo3O10 and ionic conductivity of A2Mo2O7 and A2Mo3O10 (A = K, Rb, Cs)./ Journal of Physics and Chemistry of Solids. 2021;154:110054. DOI: 10.1016/j.jpcs.2021.110054.

6. Buzlukov A.L., Baklanova Y.V., Arapova I.Y., Savina A.A., Morozov V.A., Bardet M., et al. Na9In(MoO4)6: synthesis, crystal structure, and Na+ ion diffusion. Ionics. 2021;27:4281-4293. DOI: 10.1007/s11581-021-04226-3.

7. Xavier D., George A., Loureiro F.J.A., Rajesh S. Electrochemical properties of double molybdate LiSm(MoO4)2 ceramics with ultra-low sintering temperature. Electrochimica Acta. 2023;452:142317. DOI: 10.1016/j.electacta.2023.142317.

8. Siva Priya A.A., Solomon S., Thomas J.K., Veena M.R., John A. Structural, optical and electrical characteristics of samarium molybdate nanoceramic. Ceramics International. 2024;50(1):105-114. DOI: 10.1016/j.ceramint.2023.10.018.

9. Morkhova Y.A., Orlova E.I., Kabanov A.A., Sorokin T.A., Egorova A.V., Gilev A.R., et al. Comprehensive study of conductivity in the series of monoclinic oxymolybdates: Ln2MoO6 (Ln = Sm, Gd, Dy). Solid State Ionics. 2023;400:116337. DOI: 10.1016/j.ssi.2023.116337.

10. Huang M.N., Ma Y.Y., Huang X.Y., Ye S., Zhang Q.Y. The luminescence properties of Bi3+ sensitized Gd2MoO6:RE3+ (RE = Eu or Sm) phosphors for solar spectral conversion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;115:767-771. DOI: 10.1016/j.saa.2013.06.111.

11. Lee H.-W., Cho Y.-S., Huh Y.-D. The preparation and photoluminescence properties of Y2−xEux(MoO4)3 nanophosphors and a transparent Y1.4Eu0.6(MoO4)3 suspension. Optical Materials. 2020;107:110131. DOI: 10.1016/j.optmat.2020.110131.

12. Zhu R., Jia K., Bi Z., Liu Y., Lyu Y. Realizing white emission in Sc2(MoO4)3:Eu3+/Dy3+/Ce3+ phosphors through computation and experiment. Journal of Solid State Chemistry. 2020;290:121592. DOI: 10.1016/j.jssc.2020.121592.

13. Lv H., Liu L., Wang D., Mai Zh., Yan F., Xing G., et al. Enhanced upconversion emission in Er3+/Yb3+-codoped Al2Mo3O12 microparticles via doping strategy: towards multimode visual optical thermometer. Journal of Luminescence. 2022;252:119333. DOI: 10.1016/j.jlumin.2022.119333.

14. Zhang Y., Wang B., Liu Y., Bai G., Fu Z., Liu H. Upconversion luminescence and temperature sensing charateristics of Yb3+/Tm3+:KLa(MoO4)2 phosphors. Dalton Transactions. 2021;50(4):1239-1245. DOI: 10.1039/D0DT03979A.

15. Vats B.G., Shafeeq M., Kesari S. Triple molybdates and tungstates scheelite structures: effect of cations on structure, band-gap and photoluminescence properties. Journal of Alloys and Compounds. 2021;865:158818. DOI: 10.1016/j.jallcom.2021.158818.

16. Lim C.-S., Aleksandrovsky A., Molokeev M., Oreshonkov A., Atuchin V. Structural and spectroscopic effects of Li+ substitution for Na+ in LixNa1-xCaGd0.5Ho0.05Yb0.45(MoO4)3 scheelite-type upconversion phosphors. Molecules. 2021;26(23):7357. DOI: 10.3390/molecules26237357.

17. Ge X., Chen Y., Zhao Q., Chang S., Wang P., Liu S., et al. K2M2(MoO4)3 (M = Ni, Co, Mn): potential anode materials with high Li-ion storage properties and good low-temperature performance. Journal of Alloys and Compounds. 2022;921:166024. DOI: 10.1016/j.jallcom.2022.166024.

18. Gurusamy L., Karuppasamy L., Anandan S., Liu C.-H., Wu J.J. Recent advances on metal molybdate-based electrode materials for supercapacitor application. Journal of Energy Storage. 2024;79:110122. DOI: 10.1016/j.est.2023.110122.

19. Shameem A., Devendran P., Murugan A., Siva V., Seevakan K., Hussain S., et al. Rare earth doped bismuth molybdate nanoplatelets for boosting electrochemical performance: facile synthesis and device fabrication. Journal of Alloys and Compounds. 2023;968:171825. DOI: 10.1016/j.jallcom.2023.171825.

20. Panda D., Hota S.S., Choudhary R.N.P. Investigation of structural, topological, and electrical properties of scheelite strontium molybdate for electronic devices. Inorganic Chemistry Communications. 2023;158:111501. DOI: 10.1016/j.inoche.2023.111501.

21. Tolstov K.S., Politov B.V., Zhukov V.P., Chulkov E.V., Kozhevnikov V.L. The impact of atomic defects on high-temperature stability and electron transport properties in Sr2Mg1−xNixMoO6–δ solid solutions. Journal of Alloys and Compounds. 2021;883:160821. DOI: 10.1016/j.jallcom.2021.160821.

22. Bazarov B.G., Sarapulova A.E., Bazarova Z.G. Phase formation in the systems K2MoO4–AMoO4–Hf(MoO4)2 (A = Ca, Sr, Ba, Pb). Zhurnal neorganicheskoi khimii. 2005;50(8):1363-1366. EDN: HSCGUL.

23. Coelho A.A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of Applied Crystallography. 2018;51:210-218. DOI: 10.1107/S1600576718000183.

24. Bubnova R.S., Firsova V.A., Filatov S.K. Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (theta to tensor-TTT). Glass Physics and Chemistry. 2013;39:347-350. DOI: 10.1134/S108765961303005X.

25. Bazarov B.G., Sarapulova A.E., Fedorov K.N., Bazarova Zh.G., Klevtsova R.F., Glinskaya L.A. Synthesis and crystal structure of ternary molybdate compound K5Pb0,5Hf1,5(MoO4)6. Zhurnal strukturnoi khimii. 2005;46(4):776-780. DOI: jsc.niic.nsc.ru/article/13731/. EDN: HRSROL.

26. Cheary R.W., Coelho A. A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography. 1992;25:109-121. DOI: 10.1107/S0021889891010804.

27. Aksenov S.M., Pavlova E.T., Popova N.N., Tsyrenova G.D., Lazoryak B.I. Stoichiometry and topological features of triple molybdates AxByCz(MoO4)n with the heteropolyhedral open MT-frameworks: synthesis, crystal structure of Rb5{Hf1.5Co0.5(MoO4)6}, and comparative crystal chemistry. Solid State Sciences. 2024;151:107525. DOI: 10.1016/j.solidstatesciences.2024.107525.

28. Pet’kov V.I., Shipilov A.S., Sukhanov M.V. Thermal expansion of MZr2(AsO4)3 and MZr2(TO4)x(PO4)3–x (M = Li, Na, K, Rb, Cs; T = As, V). Inorganic Materials. 2015;51:1079- 1085. DOI: 10.1134/S002016851510012X.

29. Bazarov B.G., Fedorov K.N., Bazarova S.T., Bazarova Zh.G. Electrical properties of molybdates in the systems M2MoO4–AMoO4–Zr(MoO4)2. Russian Journal of Applied Chemistry. 2002;75:1026-1028. DOI: 10.1023/A:1020377905907.

30. Grossman V.G., Molokeev M.S., Bazarova J.G., Bazarov B.G. High ionic conductivity of K5–xTlx- (Mg0.5Hf1.5)(MoO4)6 (0 ≤ х ≤ 5) solid solutions. Solid State Sciences. 2022;134:107027. DOI: 10.1016/j.solidstatesciences.2022.107027.


Review

For citations:


Kovtunets E.V., Spiridonova T.S., Tushinova Yu.L., Logvinova A.V., Bazarova T.T., Bazarov B.G. Thermal expansion and ionic conductivity of K5Pb0,5Zr1,5 (MoO4)6. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):444-452. (In Russ.) https://doi.org/10.21285/achb.939. EDN: GWYOKH

Views: 205


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)