Polymeric conjugates of cefotaxime and its release kinetics
https://doi.org/10.21285/achb.952
EDN: YSVNQA
Abstract
The present study examines reaction products in the solution of antibiotic cefotaxime with succinic anhydride, maleic anhydride copolymer, and dialdehyde wheat starch. The reaction of cefotaxime with succinic anhydride is shown to produce succinamide; to maleic anhydride copolymer, cefotaxime is likely to bind via noncovalent intermolecular interactions. An azomethine derivative of oxidized polysaccharide with cefotaxime was found to form; the molar ratio of initial glucosidic units in starch, unreacted dialdehyde units, and those bonded to cefotaxime through the azomethine linkage is 0.204:0.606:0.19. Drug release from the obtained matrix form was studied in different biorelevant media (saline, phosphate buffer, and Tris-HCl buffer). The amount of cefotaxime released in ten hours was found to approach 100%. Its release proceeds in two phases. In the first phase (1–2 h), 35 (pH 7.14) to 70% (pH 7.4–8.0) of the drug substance is released into the solution, followed by a significant decrease in the release rate. The processing of kinetic data using the first-order and Higuchi equations revealed consistency with both models. The obtained rate constants increase in proportion to the solution pH. It is assumed that first, the azomethine bond hydrolysis occurs with the release of cefotaxime molecules from the polymer matrix; then, the macromolecules of oxidized starch residing on the surface are dissolved; due to an increase in the viscosity of the solution layer surrounding the conjugate particle, the hydrolysis rate decreases. In general, cefotaxime release from the conjugate proceeds as a pseudo-first-order reaction accompanied by diffusion processes.
Keywords
About the Authors
T. G. TyurinaRussian Federation
Tatyana G. Tyurina, Dr. Sci. (Chemistry), Head of Department
70, Rosa Luxemburg St., Donetsk, Donetsk People’s Republic, 283048
T. V. Kryuk
Russian Federation
Tatyana V. Kryuk, Cand. Sci. (Chemistry), Associate Professor, Senior Researcher
70, Rosa Luxemburg St., Donetsk, Donetsk People’s Republic, 283048
N. O. Shevchuk
Russian Federation
Nataliа O. Shevchuk, Junior Researcher
70, Rosa Luxemburg St., Donetsk, Donetsk People’s Republic, 283048
References
1. Bajwa N., Mahal S., Singh P.A., Jyoti K., Dewangan P., Madan J., et al. Drug–polymer conjugates: challenges, opportunities, and future prospects in clinical trials. In: Madan J., Baldi A., Chaudhary M., Chopra N. (eds). Polymer-drug conjugates: linker chemistry, protocols and applications. Cham: Springer; 2023, p. 389-469. DOI: 10.1016/B978-0-323-91663-9.00011-4.
2. Wable R.S., Jamble V.K., More A.V. Antibiotics resistance: global threat to public health. International Journal of Pharmacy and Pharmaceutical Sciences. 2024;2(2):1-9. DOI: 10.5281/zenodo.10602984.
3. Kamaruzzaman N.F, Tan L.P., Hamdan R.H., Choong S.S., Wong W.K., Gibson A.J., et al. Antimicrobial polymers: the potential replacement of existing antibiotics? International Journal of Molecular Sciences. 2019;20(11):2747. DOI: 10.3390/ijms20112747.
4. Vilar G., Tulla-Puche J., Albericio F. Polymers and drug delivery systems. Current Drug Delivery. 2012;9(4):367- 394. DOI: 10.2174/156720112801323053.
5. Sung Y.K., Kim S.W. Recent advances in polymeric drug delivery systems. Biomaterials Research. 2020;24:12. DOI: 10.1186/s40824-020-00190-7.
6. Tudu M., Samanta A. Natural polysaccharides: chemical properties and application in pharmaceutical formulations. European Polymer Journal. 2023;184:111801. DOI: 10.1016/j.eurpolymj.2022.111801.
7. Nagaraja A., Jalageri M.D, Puttaiahgowda Y.M., Reddy K.R., Raghu A.V. A review on various maleic anhydride antimicrobial polymers. Journal of Microbiological Methods. 2019;163:105650. DOI: 10.1016/j.mimet.2019.105650.
8. Wal K., Stawiński W., Dmochowska A., Rutkowski P. Advanced antimicrobial materials and applications: maleic anhydride antimicrobial polymers. In: Inamuddin, Ahamed M.I., Prasad R. (eds). Advanced antimicrobial materials and applications. Singapore: Springer; 2020, p. 171-192. DOI: 10.1007/978-981-15-7098-8_7.
9. Münster L., Fojtů M., Capáková Z., Muchová M., Musilová L., Vaculovič T., et al. Oxidized polysaccharides for anticancer-drug delivery: what is the role of structure? Carbohydrate Polymers. 2021;257:117562. DOI: 10.1016/j.carbpol.2020.117562.
10. Falsafi S.R., Topuz F., Rostamabadi H. Dialdehyde carbohydrates – advanced functional materials for biomedical applications. Carbohydrate Polymers. 2023;321:121276. DOI: 10.1016/j.carbpol.2023.121276.
11. Yong H., Liu J. Recent advances on the preparation conditions, structural characteristics, physicochemical properties, functional properties and potential applications of dialdehyde starch: a review. International Journal of Biological Macromolecules. 2024;259:129261. DOI: 10.1016/j.ijbiomac.2024.129261.
12. Tyurina T.G., Kryuk T.V. Modification of maleic anhydride copolymers with aliphatic alkylamines and sulfanilamide. Russian Journal of Applied Chemistry. 2019;92(3):351-359. DOI: 10.1134/S1070427219030054. EDN: VQTDTA.
13. Moghadam P.N., Azaryan E., Zeynizade B. Investigation of poly(styrene-alt-maleic anhydride) copolymer for controlled drug delivery of ceftriaxone antibiotic. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 2010;47(8):839-848. DOI: 10.1080/10601325.2010.492265.
14. Kryuk T.V., Tyurina T.G., Kudryavtseva T.A. Sodium cefotaxime – potato starch conjugate as a potential system for antibacterial drug delivery. Khimiko-farmatsevticheskii zhurnal. 2021;55(8):50-54. (In Russian). DOI: 10.30906/0023-1134-2021-55-8-50-54. EDN: PSOTWZ.
15. Bayer I.S. Controlled drug release from nanoengineered polysaccharides. Pharmaceutics. 2023;15(5):1364. DOI: 10.3390/pharmaceutics15051364.
16. Karakus G., Ece A., Yaglioglu A.S., Zengin H.B., Karahan M. Synthesis, structural characterization, and antiproliferative/cytotoxic effects of a novel modified poly(- maleic anhydride-co-vinyl acetate)/doxorubicin conjugate. Polymer Bulletin. 2017;74:2159-2184. DOI: 10.1007/s00289-016-1821-1.
17. Chauhan K., Kaur J., Kumari A., Kumari A., Chauhan G.S. Efficient method of starch functionalization to bis-quaternary structure unit. International Journal of Biological Macromolecules. 2015;80:498-505. DOI: 10.1016/j.ijbiomac.2015.07.011.
18. Tessanan W., Phinyocheep P., Amornsakchai T. Development of biodegradable thermosetting plastic using dialdehyde pineapple stem starch. Polymers. 2023;15(18):3832. DOI: 10.3390/polym15183832.
19. Kalosakas G. Interplay between diffusion and bond cleavage reaction for determining release in polymer – drug conjugates. Materials. 2023;16(13):4595. DOI: 10.3390/ma16134595.
20. Siepmann J., Peppas N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews. 2001;48(2-3):139-157. DOI: 10.1016/s0169-409x(01)00112-0.
Review
For citations:
Tyurina T.G., Kryuk T.V., Shevchuk N.O. Polymeric conjugates of cefotaxime and its release kinetics. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):472-481. (In Russ.) https://doi.org/10.21285/achb.952. EDN: YSVNQA