Эмульсионные микро- и нанокапсулы в системе концентрат лактоглобулина / пектин с эфирным маслом лаванды Lavandula angustifolia, стабилизированные ультразвуком
https://doi.org/10.21285/achb.944
EDN: FQLQAT
Аннотация
В последние годы стремительно растет интерес к применению биоактивных соединений, выделенных из растительных источников, в качестве ингредиентов для функциональных пищевых продуктов и фармацевтических препаратов. Известно, что пищевая матрица, размер молекулы, внешние факторы и среда желудочно-кишечного тракта могут препятствовать биодоступности и абсорбции этих биоактивных соединений в организме. Защита данных соединений с помощью технологии наноинкапсуляции может повысить их стабильность. Представленная работа посвящена исследованию применения системы доставки на основе эмульсионных микро- и нанокапсул для защиты биоактивных соединений (эфирных масел) и изучению ультразвукового влияния различной амплитуды на стабильность эмульсионных микрокапсул в системе белок / пектин с эфирным маслом. Были вычислены: средний размер полученных микрокапсул, дзета-потенциал, удельная поверхность частиц и вязкость дисперсной системы. Показано, что действие ультразвука инициирует образование пектинового слоя с разной плотностью заряда на поверхности частиц эмульсии в зависимости от приложенной силы ультразвука. Найдено оптимальное значение амплитуды ультразвука, способствующее формированию частиц со средним размером и с высокой удельной поверхностью 32967 см2 на 1 мл эмульсии. Полученные нано- и микрочастицы с эфирным маслом показали хорошую антимикробную, антигрибковую и антивирусную активность. Разработанные системы доставки на основе пищевых биополимеров с выявленными характеристиками вполне могут соответствовать требованиям рынка антибактериальных препаратов и найти свое применение в области создания функциональных продуктов.
Ключевые слова
Об авторах
Ш. Р. АлиеваТаджикистан
Алиева Шахнозабону Раджабековна, аспирант; химик-аналитик
734065, г. Душанбе, ул. Айни, 299/2
734025, г. Душанбе, ул. Айни, 267
Г. А. Кодирова
Таджикистан
Кодирова Гулру Абдусамадовна, научный сотрудник
734065, г. Душанбе, ул. Айни, 299/2
З. У. Шерова
Таджикистан
Шерова Замира Умаралиевна, научный сотрудник
734065, г. Душанбе, ул. Айни, 299/2
С. Р. Усманова
Таджикистан
Усманова Сураё Рахматжоновна, к.х.н., ведущий научный сотрудник
734065, г. Душанбе, ул. Айни, 299/2
З. К. Мухидинов
Таджикистан
Мухидинов Зайниддин Камарович, д.х.н., профессор, главный научный сотрудник
734065, г. Душанбе, ул. Айни, 299/2
Список литературы
1. Cicero A.F.G., Colletti A. Role of phytochemicals in the management of metabolic syndrome // Phytomedicine. 2016. Vol. 23, no. 11. P. 1134–1144. DOI: 10.1016/j.phymed.2015.11.009.
2. Banwo K., Olojede A.O., Adesulu-Dahunsi A.T., Verma D.K., Thakur M., Tripathy S., et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: a review on recent trends // Food Bioscience. 2021. Vol. 43. P. 101320. DOI: 10.1016/j.fbio.2021.101320.
3. McClements D.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals // Biotechnology Advances. 2020. Vol. 38. P. 107287. DOI: 10.1016/j.biotechadv.2018.08.004.
4. Araiza-Calahorra A., Akhtar M., Sarkar A. Recent advances in emulsion-based delivery approaches for curcumin: from encapsulation to bioaccessibility // Trends in Food Science & Technology. 2018. Vol. 71. P. 155–169. DOI: 10.1016/j.tifs.2017.11.009.
5. Lagoa R., Silva J., Rodrigues J.R., Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity // Biotechnology Advances. 2020. Vol. 38. P. 107382. DOI: 10.1016/j.biotechadv.2019.04.004.
6. Kaur V., Kumar M., Kumar A., Kaur K., Dhillon V., Kaur S. Pharmacotherapeutic potential of phytochemicals: implications in cancer chemo-prevention and future perspectives // Biomedicine & Pharmacotherapy. 2018. Vol. 97. P. 564–586. DOI: 10.1016/j.biopha.2017.10.124.
7. Barba F.J., Mariutti L.R.B., Bragagnolo N., Mercadante A.Z., Barbosa-Cánovas G.V., Orlien V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing // Trends in Food Science & Technology. 2017. Vol. 67. P. 195–206. DOI: 10.1016/j.tifs.2017.07.006.
8. Gleeson J.P. Diet, food components and the intestinal barrier // Nutrition Bulletin. 2017. Vol. 42, no. 2. P. 123–131. DOI: 10.1111/nbu.12260.
9. Zhang R., Belwal T., Li L., Lin X., Xu Y., Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: a review // Carbohydrate Polymers. 2020. Vol. 242. P. 116388. DOI: 10.1016/j.carbpol.2020.116388.
10. Anal A.K., Shrestha S., Sadiq M.B. Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems // Food Hydrocolloids. 2019. Vol. 87. P. 691–702. DOI: 10.1016/j.foodhyd.2018.09.008.
11. Nanobiotechnology. Human health and the environment / eds A. Dhawan, S. Singh, A. Kumar, R. Shanker. Boca Raton: CRC Press, 2018. 512 p. DOI: 10.1201/9781351031585.
12. Silva M.P., Fabi J.P. Food biopolymers-derived nanogels for encapsulation and delivery of biologically active compounds: a perspective review // Food Hydrocolloids for Health. 2022. Vol. 2. P. 100079. DOI: 10.1016/j.fhfh.2022.100079.
13. Wei Z., Huang Q. Assembly of protein − polysaccharide complexes for delivery of bioactive ingredients: a perspective paper // Journal of Agricultural and Food Chemistry. 2019. Vol. 67, no. 5. P. 1344–1352. DOI: 10.1021/acs.jafc.8b06063.
14. Anal K., Boonlao N., Ruktanonchai U.R. Emulsion systems stabilized with biopolymers to enhance oral bioaccessibility and bioavailability of lipophilic bioactive compounds // Current Opinion in Food Science. 2023. Vol. 50. P. 101001. DOI: 10.1016/j.cofs.2023.101001.
15. Semenova M. Protein – polysaccharide associative interactions in the design of tailor-made colloidal particles // Current Opinion in Colloid & Interface Science. 2017. Vol. 28. P. 15–21. DOI: 10.1016/j.cocis.2016.12.003.
16. Rezaei A., Fathi M., Jafari S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers // Food Hydrocolloids. 2019. Vol. 88. P. 146–162. DOI: 10.1016/j.foodhyd.2018.10.003.
17. Koksel H., Masatcioglu T., Kahraman K., Ozturk S., Basman A. Improving effect of lyophilization on functional properties of resistant starch preparations formed by acid hydrolysis and heat treatment // Journal of Cereal Science. 2008. Vol. 47, no. 2. P. 275–282. DOI: 10.1016/j.jcs.2007.04.007.
18. Мухидинов З.К., Бобокалонов Д.Т., Усманова С.Р. Пектин – основа для создания функциональной пищи. Душанбе: Изд-во ООО «СифатОфсет», 2019. 192 с.
19. Rezzoug M., Bakchiche B., Gherib A., Roberta A., FlaminiGuido, Kilincarslan Ö., et al. Chemical composition and bioactivity of essential oils and ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. from the Algerian Saharan Atlas // BMC Complementary and Alternative Medicine. 2019. Vol. 19. P. 146. DOI: 10.1186/s12906-019-2556-y.
20. Sharopov F., Setzer W.N. Medicinal plants of Tajikistan // Vegetation of Central Asia and environs / eds D. Egamberdieva, M. Öztürk. Cham: Springer, 2018. P. 163–209. DOI: 10.1007/978-3-319-99728-5_7.
21. Yamani H.A., Pang E.C., Mantri N., Deighton M.A. Antimicrobial activity of Tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria // Frontiers in Microbiology. 2016. Vol. 7. P. 681. DOI: 10.3389/fmicb.2016.00681.
22. Rai M., Paralikar P., Jogee P., Agarkar G., Ingle A. P., Derita M., et al. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: emerging trends and future perspectives // International Journal of Pharmaceutics. 2017. Vol. 519, no. 1-2. P. 67–78. DOI: 10.1016/j.ijpharm.2017.01.013.
23. Sokmen A., Abdel-Baki A.-A.S., Al-Malki E.S., Al-Quraishy S., Abdel-Haleem H.M. Constituents of essential oil of Origanum minutiflorum and its in vitro antioxidant, scolicidal and anticancer activities // Journal of King Saud University – Science. 2020. Vol. 32, no. 4. P. 2377–2382. DOI: 10.1016/j.jksus.2020.03.018.
24. Yang K., Liu A., Hu A., Li J., Zen Z., Liu Y., et al. Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation // Food Control. 2021. Vol. 123. P. 107783. DOI: 10.1016/j.foodcont.2020.107783.
25. Elsebai M.F., Albalawi M.A. Essential oils and COVID-19 // Molecules. 2022. Vol. 27, no. 22. P. 7893. DOI: 10.3390/molecules27227893.
26. Strub D.J., Talma M., Strub M., Rut W., Zmudzinski M., Brud W., et al. Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts // Scientific Reports. 2022. Vol. 12. P. 14230. DOI: 10.1038/s41598-022-18676-w.
27. Патент № 563, Республика Таджикистан. Флеш способ экстракции пектина из растительного сырья / З.К. Мухидинов, Х.И. Тешаев, А.С. Джонмуродов, Л.С. Лиу. Опубл. 2013. Бюл. № 86.
28. Мухидинов З.К., Джонмуродов А.С., Тешаев Х.И., Бобокалонов Д.Т., Халикова М.Д., Касымова Г.Ф. [и др.]. Концентрат лактоглобулинов из молочной сыворотки и методы их выделения // Журнал здравоохранения Таджикистана. 2009. N 5. C. 44–49.
29. Shamsara O., Jafari S.M., Muhidionv Z.K. Development of double layered emulsion droplets with pectin/β-lactoglobulin complex for bioactive delivery purposes // Journal of Molecular Liquid. 2017. Vol. 243. P. 144–150. DOI: 10.1016/j.molliq.2017.08.036.
30. Kharat M., Zhang G., McClements D.J. Stability of curcumin in oil-in-water emulsions: impact of emulsifier type and concentration on chemical degradation // Food Research International. 2018. Vol. 111. P. 178–186. DOI: 10.1016/j.foodres.2018.05.021.
31. Sze A., Erickson D., Ren L., Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow // Journal of Colloid and Interface Science. 2003. Vol. 261, no. 2. P. 402–410. DOI: 10.1016/S0021-9797(03)00142-5.
32. Sumalan R.M., Kuganov R., Obistioiu D., Popescu I., Radulov I., Alexa E., et al. Assessment of mint, basil and lavender essential oils vapor-phase in antifungal protection and lemon fruits quality // Molecules. 2020. Vol. 25, no. 8, P. 1831. DOI: 10.3390/molecules25081831.
33. Rashad Y.M., Abdel Razik E.S., Darwish D.B. Essential oil from Lavandula angustifolia elicits expression of three SbWRKY transcription factors and defense-related genes against sorghum damping-off // Scientific Reports. 2022. Vol. 12. P. 857. DOI: 10.1038/s41598-022-04903-x.
34. Wang R., Wang L.-H., Wen Q.-H., He F., Xu F.-Y., Chen B.-R., et al. Combination of pulsed electric field and pH shifting improves the solubility, emulsifying, foaming of commercial soy protein isolate // Food Hydrocolloids. 2023. Vol. 134. P. 108049. DOI: 10.1016/j.foodhyd.2022.108049.
35. O’Sullivan J., Murray B., Flynn C., Norton I. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins // Food Hydrocolloids. 2016. Vol. 53. P. 141–154. DOI: 10.1016/j.foodhyd.2015.02.009.
36. Shamsara O., Muhidinov Z.K., Jafari S.M., Bobokalonov J., Jonmurodov A., Taghvaei M., et al. Effect of ultrasonication, pH and heating on stability of apricot gum-lactoglobuline two-layer nanoemulsions // International Journal of Biological Macromolecules. 2015. Vol. 81. P. 1019–1025. DOI: 10.1016/j.ijbiomac.2015.09.056.
37. Tippetts M., Shen F.K., Martini S. Oil globule microstructure of protein/polysaccharide or protein/protein bilayer emulsions at various pH // Food Hydrocolloids. 2013. Vol. 30, no. 2. P. 559–566. DOI: 10.1016/j.foodhyd.2012.07.012.
38. Neckebroeck B., Verkempinck S.H.E., Vaes G., Wouters K., Magnée J., Hendrickx M.E., et al. Advanced insight into the emulsifying and emulsion stabilizing capacity of carrot pectin subdomains // Food Hydrocolloids. 2020. Vol. 102. P. 105594. DOI: 10.1016/j.foodhyd.2019.105594.
39. Devi N., Sharmah M., Khatun B., Maji T.K. Encapsulation of active ingredients in polysaccharide – protein complex coacervates // Advances in Colloid and Interface Science. 2017. Vol. 239. P. 136–145. DOI: 10.1016/j.cis.2016.05.009.
40. Пономарева Е.И., Молохова Е.И., Холов А.К. Применение эфирных масел в фармации // Современные проблемы науки и образования. 2015. N 4. C. 567. EDN: UDXCBP.
41. Червоткина Д.Р., Борисова А.В. Антимикробные препараты природного происхождения: обзор свойств и перспективы применения // Известия вузов. Прикладная химия и биотехнология. 2022. Т. 12. N 2. 254–267. DOI: 10.21285/2227-2925-2022-12-2-254-267. EDN: EKZZBE.
42. Yuan C., Wang Y., Liu Y., Cui B. Physicochemical characterization and antibacterial activity assessment of lavender essential oil encapsulated in hydroxypropyl-beta-cyclodextrin // Industrial Crops and Products. 2019. Vol. 130. P. 104–110. DOI: 10.1016/J.INDCROP.2018.12.067.
Рецензия
Для цитирования:
Алиева Ш.Р., Кодирова Г.А., Шерова З.У., Усманова С.Р., Мухидинов З.К. Эмульсионные микро- и нанокапсулы в системе концентрат лактоглобулина / пектин с эфирным маслом лаванды Lavandula angustifolia, стабилизированные ультразвуком. Известия вузов. Прикладная химия и биотехнология. 2024;14(4):482-494. https://doi.org/10.21285/achb.944. EDN: FQLQAT
For citation:
Alieva Sh.R., Qodirova G.A., Sherova Z.U., Usmanova S.R., Muhidinov Z.K. Emulsion micro- and nanocapsules of the lactoglobulin concentrate / pectin system with essential oil of Lavandula angustifolia stabilized by ultrasound. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):482-494. (In Russ.) https://doi.org/10.21285/achb.944. EDN: FQLQAT