Root growth in transgenic tobacco plants with overexpression of the PtrXTH1 gene encoding xyloglucan endotransglycosylase under abiotic stress
https://doi.org/10.21285/achb.945
EDN: VEHRVM
Abstract
Xyloglucan endotransglycosylases are hydrolytic cell wall enzymes that are involved in the regulation and promotion of plant growth. Overexpression of genes encoding xyloglucan endotransglycosylases can have a positive effect on the growth and stress tolerance of transgenic plants; however, the mechanisms of such influence remain poorly understood. This study was aimed at creating transgenic tobacco plants with overexpression of the PtrXTH1 gene encoding aspen xyloglucan endotransglycosylase, as well as conducting a morphophysiological analysis of their roots under abiotic stress. The transgenic tobacco plants were characterized by an increased root length as compared to wild plants, both under optimal conditions and in response to salinity (100 mM sodium chloride), low temperature (12 °C), and cadmium contamination (200 μM cadmium acetate). The area of root parenchyma cells in transgenic tobacco plants is larger as compared to wild plants only under the effect of cadmium acetate, whereas under normal conditions and under low-temperature and salinity stress, no difference in cell size was observed. The PtrXTH1 gene overexpression contributed to the increased total antioxidant capacity in the roots, as well as a higher content of proline, water-soluble sugars, and oxidized and reduced glutathione, in the context of the three stress factors. Thus, the PtrXTH1 transgene stimulates the growth of tobacco roots under normal and abiotic stress conditions, which is accompanied by positive changes in the antioxidant system.
Keywords
About the Authors
Z. A. BerezhnevaRussian Federation
Zoya A. Berezhneva, Junior Researcher
71, Oktyabrya Avenue, Ufa, 450054
K. G. Musin
Russian Federation
Khalit G. Musin, Cand. Sci. (Biology), Researcher
71, Oktyabrya Avenue, Ufa, 450054
B. R. Kuluev
Russian Federation
Bulat R. Kuluev, Dr. Sci. (Biology), Head of the Laboratory
71, Oktyabrya Avenue, Ufa, 450054
References
1. Van Sandt V.S.T., Suslov D., Verbelen J.-P., Vissenberg K. Xyloglucan endotransglucosylase activity loosens a plant cell wall. Annals of Botany. 2007;100:1467-1473. DOI: 10.1093/aob/mcm248.
2. Cho S.K., Kim J.E., Park J.-A., Eom T.J., Kim W.T. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Letters. 2006;580(13):3136-3144. DOI: 10.1016/j.febslet.2006.04.062.
3. Han Y., Ban Q., Hou Y., Meng K., Suo J., Rao J. Isolation and characterization of two persimmon xyloglucan endotransglycosylase/hydrolase (XTH) genes that have divergent functions in cell wall modification and fruit postharvest softening. Frontiers in Plant Science. 2016;7:624. DOI: 10.3389/fpls.2016.00624.
4. Han Y., Han S., Ban Q., He Y., Jin M., Rao J. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants. Plant Cell Reports. 2017;36:583-596. DOI: 10.1007/s00299-017-2105-4.
5. Kuluev B.R., Mikhaylova E.V., Berezhneva Z.A., Nikonorov Y.M., Postrigan B.N., Kudoyarova G.R., et al. Expression profiles and hormonal regulation of tobacco NtEXGT gene and its involvement in abiotic stress response. Plant Physiology and Biochemistry. 2017;111:203-215. DOI: 10.1016/j.plaphy.2016.12.005.
6. Kuluev B.R., Berezhneva Z.A., Knyazev A.V., Nikonorov Y.M., Chemeris A.V. Role of PtrXTH1 and PnXTH1 genes encoding xyloglucan endo-transglycosylases in regulation of growth and adaptation of plants to stress factors. Fiziologiya rastenii. 2018;65(1):26-37. (In Russian). DOI: 10.7868/S0015330318010037. EDN: YMTJBE.
7. Han Y., Wang W., Sun J., Ding M., Zhao R., Deng S., et al. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. Journal of Experimental Botany. 2013;64(14):4225-4238. DOI: 10.1093/jxb/ert229.
8. Yang K.A., Lim C.J., Hong J.K., Park C.Y., Cheong Y.H., Chung W.S., et al. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Science. 2006;171(1):175-182. DOI: 10.1016/J.PLANTSCI.2006.03.013.
9. Dong J., Jiang Y., Chen R., Xu Z., Gao X. Isolation of a novel xyloglucan endotransglucosylase (OsXET9) gene from rice and analysis of the response of this gene to abiotic stresses. African Journal of Biotechnology. 2011;10(76):17424-17434. DOI: 10.5897/AJB11.1242.
10. Wang M., Xu Z., Ding A., Kong Y. Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco (Nicotiana tabacum L.). Genes. 2018;9(6):273. DOI: 10.3390/genes9060273.
11. Berezhneva Z.A., Kashafutdinova A.R., Kuluev B.R. Root growth in Nicotiana tabacum transgenic plants with overexpression of BnGSH gene of oilseed rape glutathione synthetase under stress factors. Plant Protection News. 2017;3:55-59. (In Russian). EDN: ZIFWJZ.
12. Duncan D.B. Multiple range and multiple F test. Biometrics. 1955;11(1):1-42. DOI: 10.2307/3001478.
13. Filin A.N., Ivanov V.B. Effect of 2,4-D on cell proliferation and elongation in the roots of Arabidopsis thaliana. Fiziologiya rastenii. 2016;63(1):174-179. (In Russian). DOI: 10.7868/S0015330316010061. EDN: UXXEKT.
14. Chevari S., Chaba I., Sekei I. Role of superoxide dismutase in cellular oxidative processes and method of its determination in biological materials. Laboratornoe delo. 1985;11:678-681. (In Russian).
15. Ermakov A.I., Arasimovich V.V., Yarosh N.P., Peruanskii Yu.V., Lukovnikova G.A., Smirnova-Ikonnikova M.I. Methods for biochemical research of plants. Leningrad: Agropromizdat; 1987, 430 p. (In Russian).
16. Verma S., Dubey R.S. Lead toxicity induces lipid peroxidation and alert the activities of antioxidant enzymes in grooving rice plants. Plant Science. 2003;164(4):645- 655. DOI: 10.1016/S0168-9452(03)00022-0.
17. Dubois M., Gilles K.A., Hamilton J., Robers P.A., Smith F. Colorimetric method for determination of sugar sand related substances. Analytical Chemistry. 1956;28(3):350- 356. DOI: 10.1021/AC60111A017.
18. Panchuck I.I. Volkov R.A., Schöffl F. Heat stress- and heat shock transcription factor-depend expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology. 2002;129(2):838-853. DOI: 10.1104/pp.001362.
19. Habig W.H., Pabst M.S., Jakoby W.B. Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry. 1974;249(22):7130-7139.
20. Shalygo N.V., Shcherbakov R.A., Domanskaya I.N., Radyuk M.S. Spectrofluorimetric method for the determination of oxidized and reduced glutathione in plants. Fiziologiya i biokhimiya kul’turnykh rastenii. 2007;39(3):264- 270. (In Russian).
21. Taylor N.L., Millar A.H. Oxidative stress and plant mitochondria. In: Leister D., Herrmann J.M. (eds). Mitochondria. Methods in Molecular Biology. Humana Press; 2007, vol. 372, p. 389-403. DOI: 10.1007/978-1-59745-365-3_28.
22. Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies. Plant and Soil. 1973;39:205-207. DOI: 10.1007/BF00018060.
23. Khedr A.H.A., Abbas M.A., Wahid A.A.A., Quick W.P., Abogadallah G.M. Proline induces the expression of saltstress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. Journal of Experimental Botany. 2003;54(392):2553-2562. DOI: 10.1093/jxb/erg277.
24. Boestfleisch C., Wagenseil N.B., Buhmann A.K., Seal C.E., Wade E.M., Muscolo A., et al. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants. 2014;6. DOI: 10.1093/aobpla/plu046.
25. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72(1-2):248-254. DOI: 10.1006/abio.1976.9999.
26. Shvets D.Yu., Berezhneva Z.A., Musin Kh.G., Kuluev B.R. Effect of rol genes of the A4, 15834, and K599 strains of Agrobacterium rhizogenes on root growth and states of the antioxidant systems of transgenic tobacco plants subjected to abiotic stress. Fiziologiya rastenii. 2024;71(5):632-646. (In Russian). DOI: 10.31857/S0015330324050111. EDN: MLUDPV.
27. Berezhneva Z.A., Musin kh.G., Kuluev B.R. Root growth of transgenic tobacco plants with overexpression of expansin and xyloglucan endotransglycosylase genes under cadmium stress. Fiziologiya rastenii. 2022;69(5):522- 530. (In Russian). DOI: 10.31857/S0015330322050037. EDN: OVOZAD.
Review
For citations:
Berezhneva Z.A., Musin K.G., Kuluev B.R. Root growth in transgenic tobacco plants with overexpression of the PtrXTH1 gene encoding xyloglucan endotransglycosylase under abiotic stress. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):495-503. (In Russ.) https://doi.org/10.21285/achb.945. EDN: VEHRVM