Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

EFFECTS OF THE PRE-TREATMENT OF THE MISCANTHUS ENERGY CROP ON THE ETHANOL YIELD

https://doi.org/.org/10.21285/2227-2925-2018-8-3-79-84

Abstract

Сellulose containing raw materials are widely recognized to be a promising and ubiquitous type of biomass that can be used to produce ethanol without using additional arable land and without competing with the food sector of the economy. Key factors in determining the efficiency of bioethanol production include the chemical composition of cellulose containing raw materials and methods of their preliminary treatment. In this work, Miscanthus substrates were obtained by preliminary chemical treatment under the conditions of an experimental industrial production laboratory of the Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch оf the Russian Academy of Sciences. It is shown that, at the saccharification stage, the highest concentration of reducing substances was achieved for substrates obtained by one-stage chemical treatment, with the concentrations being equal 43,6 g/l and 43,7 g/l for the substrates after nitrate and alkaline delignification treatments, respectively. The dependence of bioethanol yield on various parameters has been studied. It is shown that, with respect to the amount of bioethanol yield from 1 t of Miscanthus, the substrates obtained can be presented in the following order: product of nitric acid treatment > pulp (technical cellulose, combined method) > product of alkaline delignification > pulp (technical cellulose, nitric acid method).

About the Author

O. V. Baibakova
Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences
Russian Federation


References

1. Kurian J.K., Nair G.R., Hussain A., Raghavan G.S.V. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive Renewable and Sustainable // Energy Reviews. 2013. Vol. 25. P. 205-219.

2. Meng X., Ragauskas A.J. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates // Curr. Opin. Biotechnol. 2014. Vol. 27. P. 150-158.

3. Phitsuwan P., Permsriburasuk C., Waeonukul R., Pason P., Tachaapaikoon C., Ratanakhanokchai K. Evaluation of fuel ethanol production from aqueous ammonia-treated rice straw via simultaneous saccharification and fermentation // Biomass and Bioenergy. 2016. Vol. 93. P. 150-157.

4. Mood S.H., Golfeshan A.H., Tabatabaei M., Jouzani G.S., Najafi G.H., Gholami M., Ardjmand M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment // Renewable and Sustainable Energy Reviews. 2013. N 27. Р. 77-93.

5. Maurya D.Р., Singla A., Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol // Biotechnology. 2015. N 5. Р. 597-609.

6. Xu Z., Huang F. Pretreatment Methods for Bioethanol Production // Applied Biochemistry and Biotechnology. 2014. Vol. 174. P. 43-62.

7. Weijde T., Kamei C.L.A., Torres A.F., Vermerris W., Dolstra O., Visser R.G. et al. The potential of C4 grasses for cellulosic biofuel production // Frontiers in Plant Science. 2013. Vol. 4. P. 107.

8. Scordia D., Cosentino S.L., Jeffries T.W. Effectiveness of dilute oxalic acid pretreatment of Miscanthus giganteus biomass for ethanol production // Biomass and Bioenergy. 2013. Vol. 59. Р. 540-548.

9. Kärcher M.A., Iqbal Y., Lewandowski I., Senn T. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment // Bioresource Technology. 2015. Vol. 180. P. 360-364.

10. Cha Y.-L., An G.H., Yang J., Moon Y.-H., Yu G.-D., Ahn J.-W. Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants // Renewable Energy. 2015. Vol. 80. P. 259-265.

11. Xue S., Lewandowski I., Wang X., Yi Z. Assessment of the production potentials of Miscanthus on marginal land in China // Renewable and Sustainable Energy Reviews. 2016. Vol. 54. P. 932-943.

12. Yu.A. Gismatulina, V.V. Budaeva. Chemical composition of five Miscanthus sinensis harvests and nitric-acid cellulose therefrom // Industrial Crops and Products. 2017. Vol. 109. Р. 227-232.

13. Гисматулина Ю.А., Будаева В.В. Сравнение целлюлоз, выделенных из мискантуса, с хлопковой целлюлозой методом ИК-Фурье спектроскопии // Ползуновский вестник. 2014. N 3. С. 177-181.

14. Байбакова О.В., Скиба Е.А., Будаева В.В., Золотухин В.Н. Щелочная делигнификация недревесного целлюлозосодержащего сырья в условиях опытного производства // Ползуновский вестник. 2016. N 4-1. С. 147-151.

15. Байбакова О.В. Химико-энзиматическая конверсия в биоэтанол отходов злаковых культур // Известия вузов. Прикладная химия и биотехнология. 2016. Т. 6, N 2 (17). С. 51-56.

16. Skiba E.A., Budaeva V.V., Baibakova O.V., Zolotukhin V.N., Sakovich G.V. Dilute nitric-acid pretreatment of oat hulls for ethanol production // Biochemical Engineering Journal. 2017. Т. 126. P. 118-125.

17. Baibakova O.V., Skiba E.A., Budaeva V.V., Sakovich G.V. Preparing bioethanol from oat hulls pretreated with a dilute nitric acid: scaling of the production process on a pilot plant // Catalysis in Industry. 2017. Т. 9, N 3. P. 257-263.

18. Яровенко В.Л., Маринченко В.А., Смирнов В.А. М.: Колос, 1999. 464 с.


Review

For citations:


Baibakova O.V. EFFECTS OF THE PRE-TREATMENT OF THE MISCANTHUS ENERGY CROP ON THE ETHANOL YIELD. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(3):79-84. (In Russ.) https://doi.org/.org/10.21285/2227-2925-2018-8-3-79-84

Views: 186


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)