Productivity and properties of a Weizmannia coagulans strain capable of synthesizing L-lactic acid
https://doi.org/10.21285/achb.948
EDN: QWSTSZ
Abstract
Studies on the producers of L-lactic acid are highly relevant at the moment due to the broad scope of its applications. This study was aimed at selecting culture parameters for a milk-derived thermophilic strain of Weizmannia coagulans that is capable of producing L-lactic acid. It was found that the strain productivity depends on the culture temperature, stirring rate, medium pH, used neutralizing agent, and glucose concentration. The culture in flasks and a fermenter revealed that in 56 hours, the strain is capable of producing up to 80.4 g/L of lactic acid at a corresponding average productivity of 1.44 g/(L×h) with a conversion of about 99%. The most optimal parameters to achieve the highest indicators were a temperature of 50 °С, medium pH of 6.5, and a stirring rate of 150 rpm. This strain was shown to be uninhibited by high glucose concentrations; conversely, it exhibited higher productivity at glucose concentrations of 100–120 g/L in the medium. Among the neutralizing agents used for pH adjustment, the Ca(OH)2 agent was selected, which has the least effect on the size of producer cells during fermentation and whose by-products are the least toxic. The obtained results indicate that further studies on the metabolic properties and genetic modification of this strain are required in order to increase productivity, reduce the inhibitory effect of the target product on the metabolism of the producer, and obtain elevated lactic acid titers in a short fermentation time.
Keywords
About the Authors
N. L. ErtiletskayaRussian Federation
Natalya L. Ertiletskaya, Junior Researcher
31, Gazeta Krasnoyarskii Rabochii Ave., Krasnoyarsk, 660037
A. A. Sukhanova
Russian Federation
Anna A. Sukhanova, Cand. Sci. (Biology), Senior Researcher, Head of the Department of Biodegrdadable Polymer Materials
31, Gazeta Krasnoyarskii Rabochii Ave., Krasnoyarsk, 660037
A. N. Boyandin
Russian Federation
Anatoly N. Boyandin, Cand. Sci. (Biology), Senior Researcher
31, Gazeta Krasnoyarskii Rabochii Ave., Krasnoyarsk, 660037
A. A. Sereda
Russian Federation
Anna A. Sereda, Junior Researcher
31, Gazeta Krasnoyarskii Rabochii Ave., Krasnoyarsk, 660037
S. N. Syrtsov
Russian Federation
Sergei N. Syrtsov, Researcher
31, Gazeta Krasnoyarskii Rabochii Ave., Krasnoyarsk, 660037
Yu. A. Prokopchuk
Russian Federation
Yulia A. Prokopchuk, Laboratory Assistant
31, Gazeta Krasnoyarskii Rabochii Ave., Krasnoyarsk, 660037
References
1. Abedi E., Hashemi S.M.B. Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon. 2020;6(10):e04974. DOI: 10.1016/j.heliyon.2020.e04974.
2. Ojo A.O., de Smidt O. Lactic acid: a comprehensive review of production to purification. Processes. 2023;11(3):688. DOI: 10.3390/pr11030688.
3. Kim J., Kim Y.-M., Lebaka V.R., Wee Y.-J. Lactic acid for green chemical industry: recent advances in and future prospects for production technology, recovery, and applications. Fermentation. 2022;8(11):609. DOI: 10.3390/fermentation8110609.
4. Komesu A., Oliveira J.A.R.d., Martins L.H.d.S., Wolf Maciel M.R., Maciel Filho R. Lactic acid production to purification: a review/ BioResources. 2017;12(2):4364-4383. DOI: 10.15376/biores.12.2.Komesu.
5. Auras R., Harte B., Selke S. An overview of polylactides as packaging materials. Macromolecular Bioscience. 2004;4(9):835-864. DOI: 10.1002/mabi.200400043.
6. Tian X., Liu X., Zhang Y., Chen Y., Hang H., Chu J., et al. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei. Bioresource Technology. 2021;323:124549. DOI: 10.1016/j.biortech.2020.124549.
7. Kuo Y.-C., Yuan S.-F., Wang C.-A., Huang Y.-J., Guo G.-L., Hwang W.-S. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresource Technology. 2015;198:651- 657. DOI: 10.1016/j.biortech.2015.09.071.
8. Romanova M.V., Dolbunova A.N., Epishkina Y.M., Evdokimova S.A., Kozlovskiy M.R., Kuznetsov A.Y., et al. A thermophilic L-lactic acid producer of high optical purity: isolation and identification. Foods and Raw Materials. 2024;12(1):101- 109. DOI: 10.21603/2308-4057-2024-1-591.
9. Okano K., Uematsu G., Hama S., Tanaka T., Noda H., Kondo A., et al. Metabolic engineering of Lactobacillus plantarum for direct L-lactic Acid production from raw corn starch. Biotechnology Journal. 2018;13(5):1700517. DOI: 10.1002/biot.201700517.
10. Liu T., Xu X., Liu Y., Li J., Du G., Lv X., et al. Engineered microbial cell factories for sustainable production of L-lactic acid: a critical review. Fermentation. 2022;8(6):279. DOI: 10.3390/fermentation8060279.
11. Kwan T.H., Vlysidis A., Wu Z., Hu Y., Koutinas A., Lin C.S.K. Lactic acid fermentation modelling of Streptococcus thermophilus YI-B1 and Lactobacillus casei Shirota using food waste derived media. Biochemical Engineering Journal. 2017;127:97-109. DOI: 10.1016/j.bej.2017.08.012.
12. Park I., Kim I., Kang K., Sohn H., Rhee I., Jin I., et al. Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377. Process Biochemistry. 2010;45(4):487-492. DOI: 10.1016/j.procbio.2009.11.006.
13. Gupta R.S., Patel S., Saini N., Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International Journal of Systematic and Evolutionary Microbiology. 2020;70(11):5753-5798. DOI: 10.1099/ijsem.0.004475.
14. Konuray G., Erginkaya Z. Potential use of Bacillus coagulans in the food industry. Foods. 2018;7(6):92. DOI: 10.3390/foods7060092.
15. De Clerck E., Rodriguez-Diaz M., Forsyth G., Lebbe L., Logan N.A., De Vos P. Polyphasic characterization of Bacillus coagulans strains, illustrating heterogeneity within this species, and emended description of the species. Systematic and Applied Microbiology. 2004;27(1):50-60. DOI: 10.1078/0723-2020-00250.
16. Bischoff K.M., Liu S., Hughes S.R., Rich J.O. Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnology Letters. 2010;32:823-828. DOI: 10.1007/s10529-010-0222-z.
17. Michelson T., Kask K., Jõgi E., Talpsep E., Suitso I., Nurk A. L(+)-Lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073. Enzyme and Microbial Technology. 2006;39(4):861-867. DOI: 10.1016/j.enzmictec.2006.01.015.
18. Zhou X., Ye L., Wu J.C. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Applied Microbiology and Biotechnology. 2013;97:4309-4314. DOI: 10.1007/s00253-013-4710-7.
19. Ye L., Zhou X., Hudari M.S.B., Li Z., Wu J.С. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresource Technology. 2013;132:38-44. DOI: 10.1016/j.biortech.2013.01.011.
20. Maas R.H.W., Bakker R.R., Jansen M.L.A., Visser D., de Jong E., Eggink G., et al. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate. Applied Microbiology and Biotechnology. 2008;78:751-758. DOI: 10.1007/s00253-008-1361-1.
21. Borshchevskaya L.N., Gordeeva T.L., Vustin M.M., Velikaya M.A., Kalinina A.N., Sineokij S.P. Schizosaccharomyces pombe strain – lactic acid producer. Patent RF, no. 2650669; 2018. (In Russian).
22. Sukhanova A.A., Ertiletskaya N.L., Boyandin A.N., Syrtsov S.N., Sereda A.A., Prokopchuk Yu.A., et al. Growth characteristics of lactic acid-producing strains using glucose syrup as a carbon source. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(2):245- 254. (In Russian). DOI: 10.21285/2227-2925-2023-13-2-245-254. EDN: HIUHAE.
23. Zhang F., Liu J., Han X., Gao C., Ma C., Tao F., et al. Kinetic characteristics of long-term repeated fed-batch (LtRFb) L-lactic acid fermentation by a Bacillus coagulans strain. Engineering in Life Sciences. 2020;20(12):562- 570. DOI: 10.1002/elsc.202000043.
24. Aragno M. Responses of microorganisms to temperature. In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (eds). Physiological plant ecology I: responses to the physical environment. Berlin – Heidelberg: Springer; 1981, p. 339-369. DOI: 10.1007/978-3-642-68090-8_12.
25. Chen Y., Sun Y., Liu Z., Dong F., Li Y., Wang Y. Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics. Biotechnology and Bioengineering. 2020;117(11):3545-3558. DOI: 10.1002/bit.27488.
26. Chen Y., Dong F., Wang Y. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans. Applied Microbiology and Biotechnology. 2016;100:8121-8134. DOI: 10.1007/s00253-016-7644-z.
27. De Oliveira R.A., Schneider R., Rossell C.E.V., Filho R.M., Venus J. Polymer grade L-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresource Technology Reports. 2019;6:26-31. DOI: 10.1016/j.biteb.2019.02.003.
28. Abdel-Rahman M.A., Tashiro Y., Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances. 2013;31(6):877-902. DOI: 10.1016/j.biotechadv.2013.04.002.
29. Åkerberg C., Hofvendahl K., Zacchi G., Hahn-Hägerdal B. Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Applied Microbiology and Biotechnology. 1998. Vol. 49. P. 682–690. DOI: 10.1007/s002530051232.
30. Lund P.A., De Biase D., Liran O., Scheler O., Mira N.P., Cetecioglu Z., et al. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Frontiers in Microbiology. 2020;11:556140. DOI: 10.3389/fmicb.2020.556140.
31. Juturu V., Wu J.C. Microbial production of lactic acid: the latest development. Critical Reviews in Biotechnology. 2016;36(6):967-977. DOI: 10.3109/07388551.2015.1066305.
32. Guan N., Liu L. Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology. 2020;104:51-65. DOI: 10.1007/s00253-019-10226-1.
33. Tian W., Qin J., Lian C., Yao Q., Wang X. Identification of a major facilitator superfamily protein that is beneficial to L-lactic acid production by Bacillus coagulans at low pH. BMC Microbiology. 2022;22:310. DOI: 10.1186/s12866-022-02736-2.
34. Chen Y., Sun Y., Liu Z., Dong F., Li Y., Wang Y. Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics. Biotechnology and Bioengineering. 2020;117(11):3545-3558. DOI: 10.1002/bit.27488.
Review
For citations:
Ertiletskaya N.L., Sukhanova A.A., Boyandin A.N., Sereda A.A., Syrtsov S.N., Prokopchuk Yu.A. Productivity and properties of a Weizmannia coagulans strain capable of synthesizing L-lactic acid. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):525-536. (In Russ.) https://doi.org/10.21285/achb.948. EDN: QWSTSZ