Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Naphthalene concentration dynamics in an aqueous medium in the presence of Bacillus megaterium

https://doi.org/10.21285/achb.950

EDN: XFPEVA

Abstract

The study examined the concentration dynamics of naphthalene, with its initial concentrations of 1, 2, and 3 g/L in synthetic wastewater. The initial number of Bacillus megaterium MK64-1 cells in the medium amounted to 1.7×107 CFU/mL. On day 14 of the experiment, the concentration of naphthalene decreased to hundredths of a gram, while the microbial count increased to 109 CFU/mL (at the initial naphthalene concentrations of 1 and 2 g/L) and 1011 CFU/mL (at the initial naphthalene concentration of 3 g/L). After 14 days, the medium pH decreased by an average of 0.7 units (from 8.56 to 7.86) in both test and control media, with the addition of a microbial suspension. During this time, the redox potential of the medium increased by an average of 70 mV in the test media. Quite a strong direct correlation (p < 0.05) was found between the initial concentration and the amount of pollutant degraded by bacteria. The determination of dehydrogenase activity in Bacillus megaterium by means of two methods (with 2,3,5-triphenyltetrazolium chloride and methylene blue), as well as microbial sensitivity to hydrocarbon concentrations of 1, 2, and 3 g/L via the disk-diffusion method, showed no toxic effect of the analyzed pollutant concentrations on bacteria under the experimental conditions. The obtained results indicate the ability of Bacillus megaterium strain MK64-1 to biodegrade naphthalene.

About the Authors

S. A. Kovalenko
Baikal Museum SB RAS
Russian Federation

Svetlana A. Kovalenko, Postgraduate Student

1, Academic St., Listvyanka, 664520



A. B. Kupchinsky
Baikal Museum SB RAS
Russian Federation

Alexander B. Kupchinsky, Cand. Sci. (Biology), Director

1, Academic St., Listvyanka, 664520



D. I. Stom
Baikal Museum SB RAS ; Surgut State University ; Irkutsk State University ; Irkutsk National Research Technical University
Russian Federation

Devard I. Stom, Dr. Sci. (Biology), Professor, Chief Researcher

1, Akademicheskaya St., Listvyanka, 664520

1, Lenin Ave., Surgut, 628412

1, Karl Marx St., Irkutsk, 664003

83, Lermontov St., Irkutsk, 664074



References

1. Basumatary T., Parthipan P., Sarma H. Microbial contributions in restoring degraded biosphere habitats: comparing natural and engineered approaches. In: Sarma H., Joshi S.J. (eds). Biotechnology of Emerging Microbes. Prospects for Agriculture and Environment. Elsevier; 2024, p. 107-125. DOI: 10.1016/B978-0-443-15397-6.00008-5.

2. Edo G.I., Itoje-akpokiniovo L.O., Obasohan P., Ikpekoro V.O., Samuel P.O., Jikahet A.N., at al. Impact of environmental pollution from human activities on water, air quality and climate change. Ecological Frontiers. 2024;44(5):874-889. DOI: 10.1016/j.ecofro.2024.02.014.

3. Yi Y., Xie B., Zhao T., Li Z., Stom D., Liu H. Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants. Bioelectrochemistry. 2019;125:71-78. DOI: 10.1016/j.bioelechem.2018.09.003.

4. Kuzmin V.V., Boldyrev K. Hydrochemical modeling of migration of dissolved oil products in groundwater. Water Supply and Sanitary Technique. 2021;11:43-51. (In Russian). DOI: 10.35776/VST.2021.11.05. EDN: SDOTMG.

5. Carmichael A.B., Wong L.-L. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. European Journal of Biochemistry. 2001;268(10):3117-3125. DOI: 10.1046/j.1432-1327.2001.02212.x.

6. Johnson O.A., Affam A.C. Petroleum sludge treatment and disposal: a review. Environmental Engineering Research. 2019;24(2):191-201. DOI: 10.4491/eer.2018.134.

7. Ali M., Xu D., Yang X., Hu J. Microplastics and PAHs mixed contamination: an in-depth review on the sources, co-occurrence, and fate in marine ecosystems. Water Research. 2024;257:121622. DOI: 10.1016/j.watres.2024.121622.

8. Aydin D.C., Faber S.C., Attiani V., Eskes J., AldasVargas A., Grotenhuis T., et al. Indene, indane and naphthalene in a mixture with BTEX affect aerobic compound biodegradation kinetics and indigenous microbial community development. Chemosphere. 2023;340:139761. DOI: 10.1016/j.chemosphere.2023.139761.

9. Chang Y.-I., Cheng H.-P., Lai S.-H., Ning H. Biodegradation of naphthalene in the oil refinery wastewater by enriched activated sludge. International Biodeterioration & Biodegradation. 2014;86:272-277. DOI: 10.1016/j.ibiod.2013.09.018.

10. Lin C., Gan L., Chen Z., Megharaj M., Naidu R. Biodegradation of naphthalene using a functional biomaterial based on immobilized Bacillus fusiformis (BFN). Biochemical Engineering Journal. 2014;90:1-7. DOI: 10.1016/j.bej.2014.05.003.

11. Rockne K.J., Strand S.E. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Research. 2001;35(1):291-299. DOI: 10.1016/S0043-1354(00)00246-3.

12. Bagi A., Pampanin D.M., Lanzén А., Bilstad T., Kommedal R. Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation. 2014;25:111- 125. DOI: 10.1007/s10532-013-9644-3.

13. Lin C., Gan L., Chen Z.-L. Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). Journal of Hazardous Materials. 2010;182(1-3):771-777. DOI: 10.1016/j.jhazmat.2010.06.101.

14. Shen X., Dong W., Wan Y., Feng K., Liu Y., Wei Y. Influencing mechanisms of siderite and magnetite, on naphthalene biodegradation: Insights from degradability and mineral surface structure. Journal of Environmental Management. 2021;299:113648. DOI: 10.1016/j.jenvman.2021.113648.

15. Saeed M., Ilyas N., Bibi F., Jayachandran K., Dattamudi S., Elgorban A.M. Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. Environmental Pollution. 2022;292:118343. DOI: 10.1016/j.envpol.2021.118343.

16. Sharma P., Gaur P., Dwivedi S., Kumari K., Srivastava J.K., Dhakar K., et al. Harnessing microbial potentials by advancing bioremediation of PAHs through molecular insights and genetics. International Biodeterioration & Biodegradation. 2024;194:105861. DOI: 10.1016/j.ibiod.2024.105861.

17. Kosheleva I.A., Kochetkov V.V., Filonov A.E., Puntus I.F., Sokolov S.L., Anokhina T.O., et al. Plasmids of bacteria of the genus Pseudomonas. History of Science and Engineering. 2020;6:59-78. (In Russian). DOI: 10.25791/intstg.06.2020.1192. EDN: QZBECK.

18. Tarafdar A., Sinha A. Masto R.E. Biodegradation of anthracene by a newly isolated bacterial strain, Bacillus thuringiensis AT.ISM.1, isolated from a fly ash deposition site. Letters in Applied Microbiology. 2017;65(4):327-334. DOI: 10.1111/lam.12785.

19. Danilenko А.О., Georgiadi А.G. The influence of modern climate warming on the water flow and major ion flux of the Northern Dvina. Theoretical and Applied Ecology. 2022;1:64-69. (In Russian). DOI: 10.25750/1995-4301-2022-1-064-069. EDN: AUBAXL.

20. Laptev G.Yu., Yildirim E.A., Dunyashev T.P., Ilyina L.A., Tyurina D.G., Filippova V.A., et al. Genomic and phenotypical potential of antimicrobial activity of a bacillus strain Bacillus megaterium В-4801. Agricultural Biology. 2020;55(4):816-829. (In Russian). DOI: 10.15389/agrobiology.2020.4.816rus. EDN: ZHGJOC.


Review

For citations:


Kovalenko S.A., Kupchinsky A.B., Stom D.I. Naphthalene concentration dynamics in an aqueous medium in the presence of Bacillus megaterium. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):548-555. (In Russ.) https://doi.org/10.21285/achb.950. EDN: XFPEVA

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)