Synthesis of three-dimensional matrices based on collagen–pectin–polyacrylate grafted copolymers using the RbTe1.5W0.5O6 photocatalyst
https://doi.org/10.21285/achb.951
EDN: YOETUS
Abstract
The development of new promising materials of three-dimensional structure from available bioresorbable, biointegrable and biocompatible polymers is in demand and relevant in connection with the intensive development of regenerative medicine. In this work, hydrogels of the grafted copolymers of methyl methacrylate/butyl acrylate onto a mixture of collagen and pectin were obtained during photocatalysis in the presence of a complex oxide RbTe1.5W0.5O6. The characteristics of the synthesis products were obtained by gel penetrating chromatography, elemental analysis, electron microscopy, and biological biocidality tests. The collagen content in an amount of less than 40%, the microstructure of the polymer in the form of a fine-mesh, and the biocidity of the sample films were established. The polymer product was identified on the catalyst surface after the separation of the oxide powder from the aqueous dispersion. The main advantage of such materials is the unique combination of properties of their components assembled into a specific structure. The advantages of the obtained material include, among other things, the environmental advantage of the initial components - natural renewable raw materials: collagen was isolated from cod processing waste, pectin from fruit and vegetable processing waste.
Keywords
About the Authors
L. L. SemenychevaRussian Federation
Ludmila L. Semenycheva, Dr. Sci. (Chemistry), Senior Researcher, Head of Research Laboratory
23, Gagarin Ave., Nizhny Novgorod, 603950
V. V. Prodaevich
Russian Federation
Veronika V. Prodaevich, Postgraduate Student
23, Gagarin Ave., Nizhny Novgorod, 603950
V. O. Rumyantseva
Russian Federation
Victoria O. Rumyantseva, Junior Researcher
23, Gagarin Ave., Nizhny Novgorod, 603950
D. G. Fukina
Russian Federation
Diana G. Fukina, Cand. Sci. (Chemistry), Researcher
23, Gagarin Ave., Nizhny Novgorod, 603950
A. V. Koryagin
Russian Federation
Andrey V. Koryagin, Junior Researcher
23, Gagarin Ave., Nizhny Novgorod, 603950
N. B. Valetova
Russian Federation
Natalia B. Valetova, Cand. Sci. (Chemistry), Senior Researcher
23, Gagarin Ave., Nizhny Novgorod, 603950
O. N. Smirnova
Russian Federation
Olga N. Smirnova, Cand. Sci. (Biology), Senior Researcher
23, Gagarin Ave., Nizhny Novgorod, 603950
E. V. Suleimanov
Russian Federation
Evgeny V. Suleimanov, Dr. Sci. (Chemistry), Professor, Director of the Research Institute
23, Gagarin Ave., Nizhny Novgorod, 603950
References
1. Ryskina E.A., Gylmiyarova F.N., Koloteva N.A., Potekhina V.I., Gorbacheva I.V. Biomolecules and interaction between them. International Journal of Applied and Fundamental Research. 2017;6-1:97-101. (In Russian). EDN: YOSLBB.
2. Mortier C., Costa D.C.S., Oliveira M.B., Haugen H.J., Lyngstadaas S.P., Blaker J.J., et al. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. Materials Today Chemistry. 2022;26:101222. DOI: 10.1016/j.mtchem.2022.101222.
3. Viateau V., Zhou J., Guérard S., Manassero M., Thourot M., Anagnostou F., et al. Ligart: Synthetic “bioactive” and “biointegrable” ligament allowing a rapid recovery of patients: chemical grafting, in vitro and in vivo biological evaluation, animal experiments, preclinical study. Innovation and Research in BioMedical engineering. 2011;32(2):118- 122. DOI: 10.1016/j.irbm.2011.01.007.
4. Vikingsson L., Antolinos-Tupin C.M., GómezTejedor J.A., Gallego Ferrer G., Gómez Ribelles J.L. Prediction of the “in vivo” mechanical behavior of biointegrable acrylic macroporous scaffolds. Materials Science and Engineering: С. 2016;61:651-658. DOI: 10.1016/j.msec.2015.12.068.
5. Adamiak K., Sionkowska A. Current methods of collagen cross-linking: review. International Journal of Biological Macromolecules. 2020;161:550-560. DOI: 10.1016/j.ijbiomac.2020.06.075.
6. Nashchekina Y.A., Lukonina O.A., Darvish D.M., Mikhailova N.A., Nashchekin A.V., Elokhovskii V.Y., et al. Biological and rheological properties of collagen crosslinked with glutaraldehyde. Zhurnal tekhnicheskoi fiziki. 2020;90(9):1601-1606. (In Russian). DOI: 10.21883/JTF.2020.09.49697.33-20. EDN: SLVQCW.
7. Shcheblykina A.V., Mishchenko P.V., Kumeiko V.V. Pectinbased biocompatible degradable materials for tissue engineering: local tissue reaction after subcutaneous implantation. Pacific Medical Journal. 2013;2:13-17. (In Russian). EDN: QZWEFH.
8. Jayakumara G.C., Usharani N., Kawakami J., Rao J.R., Nair B.U. Studies on the physico-chemical characteristics of collagen – pectin composites. RSC Advances. 2014;4(109):63840-63849. DOI: 10.1039/c4ra10368h.
9. Yue S., Ruhua M., Rui N., Cungang G. Recombinant collagen capable of self-assembling into gel and preparation method and application thereof. Patent CN, no. 115724924A; 2023. (In Chineese).
10. Yan M., An X., Duan S., Jiang Z., Liu X., Zhao X., et al. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin. International Journal of Biological Macromolecules. 2022;213:639-650. DOI: 10.1016/j.ijbiomac.2022.06.006.
11. Liang C., Jianyong L., Xiaochao C. Preparation method and application of recombinant type III collagensodium hyaluronate double-crosslinked gel. Patent CN, no. 116603104A; 2023. (In Chineese).
12. Xie C., Schaefer L., Iozzo R.V. Global impact of proteoglycan science on human diseases. iScience. 2023;26(11):108095. DOI: 10.1016/j.isci.2023.108095.
13. Zhang M., Ou X., Shi H., Huang W., Song L., Zhu J., et al. Isolation, structures and biological activities of medicinal glycoproteins from natural resources: a review. International Journal of Biological Macromolecules. 2023;244:125406. DOI: 10.1016/j.ijbiomac.2023.125406.
14. Zhang Ch., Zhou Z., Fu S., Yu C., Irfan M., Su X. DNA nanoprobes for detection and imaging of glycoproteins. Nano Today. 2023;51:101893. DOI: 10.1016/j.nantod.2023.101893.
15. Deng Y., Ma L., Han Q., Yu C., Johnson-Buck A., Su X. DNA-templated timer probes for multiplexed sensing. Nano Letters. 2020;20(4):2688-2694. DOI: 10.1021/acs.nanolett.0c00313.
16. Semenycheva L., Chasova V., Fukina D., Suleymanov E. Synthesis of polymethyl-methacrylate–collagen-graft copolymer using a complex oxide RbTe1.5W0.5O6 photocatalyst. Polymer Science, Series D. 2022;15:110-117. DOI: 10.1134/S1995421222010166.
17. Chasova V., Semenycheva M., Egorkhina M., Charykova I., Linkova D., Rubtsova Y., et al. Cod gelatin as an alternative to cod collagen in hybrid materials for regenerative medicine. Macromolecular Research. 2022;30:212-221. DOI: 10.1007/s13233-022-0017-9.
18. Chasova V.O., Fukina D.G., Boryakov A.V., Koroleva E.V., Semenycheva L.L., Suleymanov E.V. The effect of methyl methacrylate transformations during photocatalysis in the presence of RbTe1.5W0.5O6 on the change of the complex oxide surface. Proceedings of Universities. Applied Chemistry and Biotechnology. 2022;12(2):208-221. (In Russian). DOI: 10.21285/2227-2925-2022-12-2-208-221. EDN: STAHGQ.
19. Semenycheva L., Chasova V., Fukina D., Koryagin A., Belousov A., Valetova N., et al. Photocatalytic synthesis of materials for regenerative medicine using complex oxides with β-pyrochlore structure. Life. 2023;13(2):352. DOI: 10.3390/life13020352.
20. Semenycheva L., Chasova V., Sukhareva A., Fukina D., Koryagin A., Valetova N., et al. New composite materials with cross-linked structures based on grafted copolymers of acrylates on cod collagen. Applied Sciences. 2023;13(9):5455. DOI: 10.3390/app13095455.
21. Semenycheva L., Chasova V., Matkivskaya J., Fukina D., Koryagin A., Belaya T., et al. Features of polymerization of methyl methacrylate using a photocatalyst–the complex oxide RbTe1.5W0.5O6. Journal of Inorganic and Organometallic Polymers and Materials. 2021;31:3572-3583. DOI: 10.1007/s10904-021-02054-6.
22. Walling C. Free radicals in solution. New York: Wiley; 1957, 631 p.
23. Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. Oxford: Oxford University Press; 1999, 936 p.
24. Rozantsev E.G., Sholle V.D. Organic chemistry of free radicals. Moscow: Khimiya; 1979, 344 p. (In Russian).
25. Fukina D.G., Koryagin A.V., Koroleva A.V., Zhizhin E.V., Suleimanov E.V., Kirillova N.I. Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation. Journal of Solid State Chemistry. 2021;300:122235. DOI: 10.1016/j.jssc.2021.122235.
26. Semenycheva L.L., Astanina M.V., Kuznetsova J.L., Valetova N.B., Geras’kina E.V., Tarankova O.A. Method for production of acetic dispersion of high molecular fish collagen. Patent RF, no. 2567171; 2015. (In Russian).
27. Kopelev P.V., Naschekina Y.A., Alexandrova S.A. Comparative analysis of 3d poly(l,l-lactic) scaffolds with various porosity for cartilage tissue regeneration. Bulletin of innovative technologies. 2018;2(3):25-31. (In Russian). EDN: XWXOSL.
28. Sadovoy M.A., Larionov P.M., Samokhin A.G., Rozhnova O.M. Cellular matrices (scaffolds) for bone regeneration: state of the art. Russian Journal of Spine Surgery. 2014;2:79-86. (In Russian). DOI: 10.14531/ss2014.2.79-86. EDN: YSREXR.
29. Semenycheva L.L., Egorikhina M.N., Chasova V.O., Valetova N.B., Podguzkova M.V., Astanina M.V., et al. Enzymatic hydrolysis of collagen by pancreatin and thrombin as a step in the formation of scaffolds. Russian Chemical Bulletin. 2020;69:164-168. DOI: 10.1007/s11172-020-2738-2.
30. Semenycheva L.L., Kuleshova N.V., Mitin A.V., Belaya T.A., Mochkina D.V. Molecular weight characteristics and sorption properties of pectin extracted from different substrates. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(4):728-737. (In Russian). DOI: 10.21285/2227-2925-2020-10-4-728-737. EDN: KMLLHY.
31. Eliazyan G.A., Margaryan S.M., Paronikyan A.E., Margaryan L.Y. Studying the biocidal treatment of the leather of medieval book covers by the method of retanning with an aluminum complex stabilized by trimethylolmelemе. NPUA Proceedings – Metallurgy, Material Science, Mining Engineering. 2021;1:82-88. (In Russian). DOI: 10.53297/18293395-2021.1-82. EDN: HLLLTY.
32. Suleimanov E.V., Chasova V.O., Valetova N.B., Semenycheva L.L., Fukina D.G., Koryagin A.V., et al. Method for obtaining grafted methyl methacrylate copolymer on collagen. Patent RF, no. 2777896С1; 2022.
Review
For citations:
Semenycheva L.L., Prodaevich V.V., Rumyantseva V.O., Fukina D.G., Koryagin A.V., Valetova N.B., Smirnova O.N., Suleimanov E.V. Synthesis of three-dimensional matrices based on collagen–pectin–polyacrylate grafted copolymers using the RbTe1.5W0.5O6 photocatalyst. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):556-566. https://doi.org/10.21285/achb.951. EDN: YOETUS