Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Frequency of cry-like genes in Bacillus thuringiensis strains of the Crimean microorganism collection

https://doi.org/10.21285/achb.941

EDN: AQLWEO

Abstract

The entomopathogenic strains of Bacillus thuringiensis are used in the development of new-generation biopreparations against leaf-eating insects. The present study was aimed at analyzing the frequency of cry-like genes in the strains and at identifying a promising strain for the development of an entomopathogenic biopreparation on its basis. The study materials included the entomopathogenic strains of Bacillus thuringiensis obtained from the Crimean microorganism collection of the Crimean Agricultural Research Institute. The entomopathogenic effect of promising strains was studied in laboratory experiments on Coleoptera and Lepidoptera larvae. The following strains of Bacillus thuringiensis were identified as the most promising, i.e., containing at least four toxin genes: 708 (cry1, thuE, cry7-8, cry11), 942 (cry1, thuE, cry11, vip), 949 (cry1, thuE, cry4, cry7-8), 989 (cry1, thuE, cry11, vip), 0162 (cry1, thuE, cry11, vip), 0307 (cry1, thuE, cry4, cry7-8), 0308 (cry1, thuE, cry4, cry7-8), 0363 (cry1, thuE, cry5, cry11) и 0371 (cry1, thuE, cry9, cry11). The isolated strains of Bacillus thuringiensis 0162, 0307, 0363, and 0371 were found to have a high entomopathogenic effect on the larvae of the Colorado potato beetle and elm-leaf beetle (88.3–100%), as well as the caterpillars of ermine moth, cabbage moth, brown-tail moth, and fall webworm (92.3–100%). It is shown that Bacillus thuringiensis strain 0371 goes through all traditional stages of development and exhibits complete release of crystals and spores from the sporangium within 45–48 h. Thus, strain 0371 can be used to develop specifications for manufacturing a plant protection biopreparation.

About the Author

A. V. Kryzhko
Research Institute of Agriculture of Crimea
Russian Federation

Anastasiia V. Kryzhko, Cand. Sci. (Agriculture), Leading Researcher

150, Kievskaya St., Simferopol, 295453



References

1. Arthurs S., Dara S.K. Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology. 2019;165:13-21. DOI: 10.1016/j.jip.2018.01.008.

2. Jouzani G.S., Valijanian E., Sharafi R. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Applied Microbiology and Biotechnology. 2017;101:2691-2711. DOI: 10.1007/s00253-017-8175-y.

3. Duarte Neto J.M.W., Wanderley M.C.A., da Silva T.A.F., Marques D.A.V., da Silva G.R., Gurgel J.F., et al. Bacillus thuringiensis endotoxin production: a systematic review of the past 10 years. World Journal of Microbiology and Biotechnology. 2020;36:128. DOI: 10.1007/s11274-020-02904-4.

4. Jo H., Tagele S.B., Pham H.Q., Kim M.-C., Choi S.-D., Kim M.-J., et al. Response of soil bacterial community and pepper plant growth to application of Bacillus thuringiensis KNU-07. Agronomy. 2020;10(4):551. DOI: 10.3390/agronomy10040551.

5. Perez M.P., Sauka D.H., Onco M.I., Berretta M.F., Benintende G.B. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae. Revista Argentina de Microbiología. 2017;49(3):264-272. DOI: 10.1016/j.ram.2016.12.010.

6. Soleymani S., Sarrafzadeh M.-H., Mostoufi N. Modeling of fermentation process of Bacillus thuringiensis as a sporulating bacterium. Chemical Product and Process Modeling. 2019;14(2):2018000. DOI: 10.1515/cppm-2018-0007.

7. Guttmann D.M., Ellar D.J. Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative B. thuringiensis virulence factors. FEMS Microbiology Letters. 2000;188(1):7-13. DOI: 10.1111/j.1574-6968.2000.tb09160.x.

8. Hansen B.M., Hendriksen N.B. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Applied and Environmental Microbiology. 2001. Vol. 67, no. 1. P.185–189. DOI: 10.1128/AEM.67.1.185-189.2001.

9. Palma L., Muñoz D., Berry C., Murillo J., Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel). 2014;6(12):3296-3325. DOI: 10.3390/toxins6123296.

10. Fang Y., Li Z., Liu J., Shu C., Wang X., Zhang X., et al. A pangenomic study of Bacillus thuringiensis. Journal of Genetics and Genomics. 2011;38(12):567- 576. DOI: 10.1016/j.jgg.2011.11.001.

11. Lee M.K., Walters F.S., Hart H., Palekar N., Chen J.-S. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin. Applied and Environmental Microbiology. 2003;69(8):4648-4657. DOI: 10.1128/AEM.69.8.4648-4657.2003.

12. Sena J.A., Hernández-Rodríguez C.S., Ferré J. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Applied and Environmental Microbiology. 2009;75(7):2236-2237. DOI: 10.1128/AEM.02342-08.

13. Bravo A., Likitvivatanavong S., Gill S.S., Soberón M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology. 2011;41(7):423- 431. DOI: 10.1016/j.ibmb.2011.02.006.

14. Crickmore N., Zeigler D.R., Schnepf E., Van Rie J., Lereclus D., Baum J., et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews. 1998;62(3):807- 813. DOI: 10.1128/MMBR.62.3.807-813.1998.

15. Van Frankenhuyzen K. Cross-order and crossphylum activity of Bacillus thuringiensis pesticidal proteins. Journal of Invertebrate Pathology. 2013;114(1):76-85. DOI: 10.1016/j.jip.2013.05.010.

16. Ben-Dov E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins (Basel). 2014;6(4):1222-1243. DOI: 10.3390/toxins6041222.

17. De Maagd R.A., Bravo A., Berry C., Crickmore N., Schnepf H.E. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annual Review of Genetics. 2003;37:409-433. DOI: 10.1146/annurev.genet.37.110801.143042.

18. Chougule N.P., Bonning B.C. Toxins for transgenic resistance to hemipteran pests. Toxins (Basel). 2012;4(6):405-429. DOI: 10.3390/toxins4060405.

19. Ohba M., Mizuki E., Uemori A. Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Research. 2009;29(1):427- 433.

20. Zheng J., Gao Q., Liu L, Liu H., Wang Y., Peng D., et al. Comparative genomics of Bacillus thuringiensis reveals a path to specialized exploitation of multiple invertebrate hosts. mBio. 2017;8(4):e00822-17. DOI: 10.1128/mBio.00822-17.

21. Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer–BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinfomatics. 2012;13:134. DOI: 10.1186/1471-2105-13-134.

22. Franco-Rivera A., Benintende G., Cozzi J., BaizabalAguirre V.M., Valdez-Alarcón J.J., López-Meza J.E. Molecular characterization of Bacillus thuringiensis strains from Argentina. Antonie Van Leeuwenhoek. 2004;86(1):87-92. DOI: 10.1023/B:ANTO.0000024913.94410.05.

23. Willumsen P.A., Johansen J.E., Karlson U. Isolation and taxonomic affiliation of N-heterocyclicaromatic hydrocarbon-transforming bacteria. Applied Microbiology and Biotechnology. 2005;67(3):420-428. DOI: 10.1007/s00253-004-1799-8.

24. Bravo A., Sarabia S., Lopez L., Ontiveros H., Abarca C., Ortiz A., et al. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology. 1998;64(12):4965-4972. DOI: 10.1128/AEM.64.12.4965-4972.1998.

25. Jain D., Sunda S.D., Sanadhya S., Nath D.J., Khandelwal S.K. Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech. 2017;7(1):4. DOI: 10.1007/s13205-016-0583-7.

26. Yuryev A. PCR primer design. Totowa: Humana Press; 2007, 431 p.

27. Khalafyan A.A. Modern statistical methods of medical research. Moscow: Lenand; 2014, 320 p. (In Russian).

28. Natingga D. Data science algorithms in a week. Birmingham – Mumbai: Packt Publishing; 2018, 214 p.

29. Galea A. Applied data science with Python and Jupyter. Birmingham – Mumbai: Packt Publishing; 2018, 174 p.


Review

For citations:


Kryzhko A.V. Frequency of cry-like genes in Bacillus thuringiensis strains of the Crimean microorganism collection. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):567-577. (In Russ.) https://doi.org/10.21285/achb.941. EDN: AQLWEO

Views: 96


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)