Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Influence of Rhodococcus qingshengii VKM Ac-2784D biostimulator on bacterial isolates from potato endo- and rhizosphere

https://doi.org/10.21285/achb.942

EDN: TIVSPZ

Abstract

The potato microbiome has a significant impact on plant growth and development. In order to affect this microbiome, agriculture can use various biopreparations on the basis of soil microorganisms. Being vulnerable to pathogens and drought, potato plants are particularly useful in the development of biopreparations. Special attention is given to Rhodococcus bacteria due to their ability to clean contaminated soil and stimulate plant growth. The present study was aimed at examining the effect of Rhodococcus qingshengii VKM Ac-2784D on bacteria isolated from potato endo- and rhizosphere. It is known that only a small fraction of microorganisms within the plant microbiome can be obtained in pure culture. Given these limitations, it was possible to isolate over 70 endophytic strains without the use of selective media and show that many of them are sensitive to the presence of a biopreparation component on the basis of Rhodococcus qingshengii VKM Ac-2784D. The metagenomic study indicates a change in the composition of the microbial community following treatment with the biopreparation. The experiments also show that the bacteria remain sensitive to Rhodococcus even in the presence of other competing strains. In general, the study results indicate a modulating effect of the biopreparation on the potato microbiome without phytotoxicity. The findings are important for understanding the effect of the biopreparation on the microbial composition of soil and potato plants, as well as for developing effective strategies for the use of microorganisms in agriculture.

About the Authors

A. S. Morits
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Anna S. Morits, Leading Engineer

132, Lermontov St., Irkutsk, 664033



Yu. A. Markova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Yuliya A. Markova, Dr. Sci. (Biology), Chief Researcher, Head of the Laboratory

132, Lermontov St., Irkutsk, 664033



N. V. Filinova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Nadezhda V. Filinova, Cand. Sci. (Biology), Leading Technologist

132, Lermontov St., Irkutsk, 664033



I. S. Petrushin
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Russian Federation

Ivan S. Petrushin, Cand. Sci. (Engineering), Researcher

132, Lermontov St., Irkutsk, 664033



References

1. Petrushin I.S., Filinova N. V., Gutnik D.I. Potato microbiome: relationship with environmental factors and approaches for microbiome modulation. International Journal of Molecular Sciences. 2024;25(2):750. DOI: 10.3390/ijms25020750.

2. Petrushin I.S., Vasilev I.A., Markova Yu.A. Drought tolerance of legumes: physiology and the role of the microbiome. Current Issues in Molecular Biology. 2023;45(8):6311-6324. DOI: 10.3390/cimb45080398.

3. Yarullina L.G., Burkhanova G.F., Tsvetkov V.O., Cherepanova E.A., Zaikina E.A., Sorokan A.V., et al. Stimulation of the protective mechanisms of Solanum tuberosum by the bacteria Bacillus subtilis and chitooligosaccharides upon infection with Phytophthora infestans. Applied Biochemistry and Microbiology. 2022;58:166-174. DOI: 10.1134/S0003683822020168.

4. Padilla-Gálvez N., Luengo-Uribe P., Mancilla S., Maurin A., Torres C., Ruiz P., et al. Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. BMC Microbiology. 2021;21:335. DOI: 10.1186/s12866-021-02393-x.

5. Cappelletti M., Presentato A., Piacenza E., Firrincieli A., Turner R.J., Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds. Applied Microbiology and Biotechnology. 2020;104:8567-8594. DOI: 10.1007/s00253-020-10861-z.

6. Ivshina I., Bazhutin G., Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: through the past into the future. Frontiers in Microbiology. 2022;13:967127. DOI: 10.3389/fmicb.2022.967127.

7. Krivoruchko A., Kuyukina M., Peshkur T., Cunningham C.J., Ivshina I. Rhodococcus strains from the specialized collection of alkanotrophs for biodegradation of aromatic compounds. Molecules. 2023;28(5):2393. DOI: 10.3390/molecules28052393.

8. Tretyakova M.S., Ivanova M.V., Belovezhets L.A., Markova Yu.A. Possible use of oil-degrading microorganisms for protection of plants growing under conditions of oil pollution. IOP Conference Series: Earth and Environmental Science. 2019;315:072046. DOI: 10.1088/1755-1315/315/7/072046.

9. Markova Yu.A., Petrushin I.S., Belovezhets L.A. Detection of gene clusters for biodegradation of alkanes and aromatic compounds in the Rhodococcus qingshengii VKM Ac-2784D genome. Vavilov Journal of Genetics and Breeding. 2023;27(3):276-282. DOI: 10.18699/VJGB-23-33.

10. Helfrich E.J.N., Vogel C.M., Ueoka R., Schäfer M., Ryffe F., Müller D.B., et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nature Microbiology. 2018;3:909-919. DOI: 10.1038/s41564-018-0200-0.

11. Scherlach K., Hertweck C. Mining and unearthing hidden biosynthetic potential. Nature Communications. 2021;12:3864. DOI: 10.1038/s41467-021-24133-5.

12. Chen W., Zuo Y., Hou Z., Wang B., Xiong S., Ding X., et al. Effect of Rhodococcus bioaugmentation and biostimulation on dibenzothiophene biodegradation and bacterial community interaction in petroleum-contaminated soils. Frontiers in Environmental Science. 2023;11:1270599. DOI: 10.3389/fenvs.2023.1270599.

13. Petrushin I.S., Markova Y.A., Karepova M.S., Zaytseva Y.V., Belovezhets L.A. Complete genome sequence of Rhodococcus qingshengii strain VKM Ac-2784D, isolated from Elytrigia repens rhizosphere. Microbiology Resource Announcements. 2021;10(11). DOI: 10.1128/mra.00107-21.

14. Graskova I.A., Romanenko A.S., Vladimirova S.V., Kolesnichenko A.V. Changes in peroxidase activity during potato ring rot infection. Russian Journal of Plant Physiology. 2004;51:476-479. DOI: 10.1023/B:RUPP.0000035739.81684.11.

15. Blin K., Shaw S., Augustijn H.E., Reitz Z.L., Biermann F., Alanjary M., et al. AntiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research. 2023;51(W1):W46-W50. DOI: 10.1093/nar/gkad344.

16. Undabarrena A., Valencia R., Cumsille A., Zamora-Leiva L., Castro-Nallar E., Barona-Gomez F., et al. Rhodococcus comparative genomics reveals a phylogenomicdependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microbial Genomics. 2021;7(7):000621. DOI: 10.1099/mgen.0.000621.

17. Czech L., Hermann L., Stöveken N., Richter A.A., Höppner A., Smits S.H.J., et al. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes. 2018;9(4):177. DOI: 10.3390/genes9040177.

18. Chen Y., Xie B., Yang J., Chen J., Sun Z. Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions. Food Chemistry. 2018;240:204-211. DOI: 10.1016/j.foodchem.2017.06.067.

19. Jiang W., Sun J., Gao H., Tang Y., Wang C., Jiang Y., et al. Carotenoids production and genome analysis of a novel carotenoid producing Rhodococcus aetherivorans N1. Enzyme and Microbial Technology. 2023;164:110190. DOI: 10.1016/j.enzmictec.2022.110190.

20. O’Brien S., Culbert C.T., Barraclough T.G. Community composition drives siderophore dynamics in multispecies bacterial communities. BMC Ecology and Evolution. 2023;23:45. DOI: 10.1186/s12862-023-02152-8.

21. Nazari M.T., Simon V., Machado B.S., Crestani L., Marchezi G., Concolato G., et al. Rhodococcus: a promising genus of actinomycetes for the bioremediation of organic and inorganic contaminants. Journal of Environmental Management. 2022;323:116220. DOI: 10.1016/j.jenvman.2022.116220.

22. Ivshina I.B., Kuyukina M.S., Krivoruchko A.V., Tyumina E.A. Responses to ecopollutants and pathogenization risks of saprotrophic Rhodococcus species. Pathogens. 2021;10(8):974. DOI: 10.3390/pathogens10080974.

23. Sarhan M.S., Patz S., Hamza M.A., Youssef H.H., Mourad E.F., Fayez M., et al. G3 phylochip analysis confirms the promise of plant-based culture media for unlocking the composition and diversity of the maize root microbiome and for recovering unculturable candidate divisions/ phyla. Microbes and Environments. 2018;33(3):317-325. DOI: 10.1264/jsme2.ME18023.


Review

For citations:


Morits A.S., Markova Yu.A., Filinova N.V., Petrushin I.S. Influence of Rhodococcus qingshengii VKM Ac-2784D biostimulator on bacterial isolates from potato endo- and rhizosphere. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(4):578-585. (In Russ.) https://doi.org/10.21285/achb.942. EDN: TIVSPZ

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)