Effect of culture medium and physiological state of the explant on callus formation and development in winter and spring wheat (Triticum aestivum L.)
https://doi.org/10.21285/achb.967
EDN: ZHJMGT
Abstract
Callus cultures have long been used in many works to study physiological processes and the effects of environmental factors on plant organisms. Of great importance, including for agriculture, are the callus cultures of cereals, specifically Triticum aestivum L. (wheat). However, callus induction and its effective growth are complicated by the genetic and physiological characteristics of a particular species or cultivar. In this connection, the study was aimed at examining the growth of callus cultures of winter and spring wheat on different growth media, as well as identifying the optimal medium for callus induction and effective callus growth. As explants, the study used the germs of imbibed and dry seeds. The germ was isolated from the seed and incubated on Murashige and Skoog medium, Gamborg medium, and Chu medium (modified with the microsalts of Blaydes medium) under aseptic conditions. As a growth regulator, the study used 2,4-dichlorophenoxyacetic acid at a concentration of 2.5 mg/L. The germs were cultivated for three weeks at 26 °С in the dark. In order to evaluate the effectiveness of culture media, the callus formation rate and callus biomass growth were recorded. Active callus induction was observed in the culture of dry winter and spring wheat germs on all of the used media. In the case of imbibed germs, the maximum callus formation rate in winter wheat was observed on Murashige and Skoog medium, whereas in spring wheat, it was observed on Gamborg medium. In terms of the callus growth rate, Murashige and Skoog medium and Chu medium were found to be more appropriate for cultivating winter wheat explants, while Gamborg medium showed better results for cultivating spring wheat explants.
About the Authors
P. A. FedotovRussian Federation
Pavel A. Fedotov, Laboratory Assistant
1, Karl Marx St., Irkutsk, 664033
I. V. Lyubushkina
Russian Federation
Irina V. Lyubushkina, Cand. Sci. (Biology), Senior Researcher
132, Lermontov St., Irkutsk, 664033
References
1. Ikeuchi M., Sugimoto K., Iwase A., Plant callus: mechanisms of induction and repression. The Plant Cell. 2013;25(9):3159-3173. DOI: 10.1105/tpc.113.116053.
2. Efferth T. Biotechnology applications of plant callus cultures. Engineering. 2019;5(1):50-59. DOI: 10.1016/j.eng.2018.11.006.
3. Kruglova N.N., Seldimirova O.A., Zinatullina A.E. Callus in vitro as a model system for the study of plant organogenesis. Proceedings of the RAS Ufa Scientific Centre. 2019;2:44-55. (In Russian). DOI: 10.31040/2222-8349-2019-0-2-44-54. EDN: QYQONZ.
4. Zinatullina A.E. The model system “embryo – embryonic callus” in express evaluation of stress and anti-stress effects (on the example of cereals). Ecobiotech. 2020;3(1):38-50. (In Russian). DOI: 10.31163/2618-964X2020-3-1-38-50. EDN: DBPBWZ.
5. Rebrov A. Improvement of the copy-book of nutrient medium for input of meristems of grapes in the culture of in vitro. E3S Web of Conferences. 2020;210:05015. DOI: 10.1051/e3sconf/202021005015.
6. Ivanova N.N., Tsiupka V.A., Korzina N.V. Effect of growth medium composition on the viability and genetic stability of Chrysanthemum × morifolium Ramat. explants under in vitro cold storage conditions. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(4):483-493. (In Russian). DOI: 10.21285/2227-2925-2023-13-4-483-493. EDN: RSMMRT.
7. Semenova D.A., Molkanova O.I., Akhmetova L.R., Mitrofanova I.V. Influence of nutrient medium composition on regeneration of some Clematis L. cultivars in vitro. Bulletin of KSAU. 2023;4:66-73. (In Russian). DOI: 10.36718/1819-4036-2023-4-66-73. EDN: NVJKFC.
8. Sagharyan M., Ganjeali A., Cheniany M., Mousavi Kouhi S.M. Optimization of callus induction with enhancing production of phenolic compounds production and antioxidants activity in callus cultures of Nepeta binaloudensis Jamzad (Lamiaceae). Iranian Journal of Biotechnology. 2020;18(4):47-55. DOI: 10.30498/IJB.2020.2621.
9. Tikhomirova L.I., Bazarnova N.G., Bondarev A.A., Ponomareva Ya.V., Mironova S.O. Selection of optimal conditions for accumulation and extraction of phenolic com-pounds from biotechnological raw materials of Iris L. representatives. Chemistry of plant raw material. 2020;2:249-260. (In Russian). DOI: 10.14258/jcprm.2020026333. EDN: JMGELH.
10. Yesichev A.O., Besschetnova N.N., Besschetnov V.P. Species-specificity of the pigment composition of needles of representatives of the genus larch. Conifers of the boreal area. 2021;39(4):313-321. (In Russian). EDN: OOCCHU.
11. Besschetnov V.P., Besschetnova N.N., Besschetnov P.V. Genetic dependence of poplar species specificity on starch content in shoots tissues. Forestry Bulletin. 2021;25(1):22-31. (In Russian). DOI: 10.18698/2542-1468-2021-1-22-31. EDN: YPBBZN.
12. Novikov O.O., Romanov M.S., Leonova N.I., Haksar E.V., Chudinova Yu.V. The effect of various nutrient media on plants of potato varieties Memory Rogachev and Ket in vitro. Innovations and Food Safety. 2018;4:39-45. (In Russian). DOI: 10.31677/2311-0651-2018-0-4-39-45. EDN: YQHEGT.
13. Abdelsalam N.R., Grad W.E., Ghura N.S.A., Khalid A.E., Ghareeb R.Y., Desoky E.-S.M., et al. Callus induction and regeneration in sugarcane under drought stress. Saudi Journal of Biological Sciences. 2021;28(12):7432-7442. DOI: 10.1016/j.sjbs.2021.08.047.
14. Mamdouh D., Smetanska I. Optimization of callus and cell suspension cultures of Lycium schweinfurthii for improved production of phenolics, flavonoids, and antioxidant activity. Horticulturae. 2022;8(5):394. DOI: 10.3390/horticulturae8050394.
15. Ghosh A., Ugamberdiev A.U., Debnath S.C. Tissue culture-induced DNA methylation in crop plants: a review. Molecular Biology Reports. 2021;48:823-841. DOI: 10.1007/s11033-020-06062-6.
16. Kaeppler S.M., Phillips R.L. Tissue culture-induced DNA methylation variation in maize. Proceedings of the National Academy of Sciences. 1993;90(19):8773-8776. DOI: 10.1073/pnas.90.19.8773.
17. Mohammed A.H., Baldwin B.S. Investigation of media for wheat (Triticum aestivum L.) immature embryo culture. Journal of Crop Science and Biotechnology. 2024;27:331-337. DOI: 10.1007/s12892-023-00233-0.
18. Tamimi S.M., Othman H. Callus induction and regeneration from germinating mature embryos of wheat (Triticum aestivum L.). Sains Malaysiana. 2021;50(4):889-896. DOI: 10.17576/jsm-2021-5004-01.
19. Miroshnichenko D.N., Filipov M.V., Dolgov S.V. Medium optimization for efficient somatic embryogenesis and in vitro plant regeneration of spring common wheat varieties. Russian Agricultural Sciences. 2013;39:24-28. DOI: 10.3103/S1068367413010175.
20. Blaydes D.F. Interaction of kinetin and various inhibitors in the growth of soybean tissue. Physiologia Plantarum. 1966;19(3):748-753. DOI: 10.1111/j.1399-3054.1966.tb07060.x.
21. Patial M., Chaudhary H.K., Sharma N., Sundaresha S., Kapoor R., Pal D., et al. Effect of different in vitro and in vivo variables on the efficiency of doubled haploid production in Triticum aestivum L. using Imperata cylindrica-mediated chromosome elimination technique. Cereal Research Communications. 2021;49:133-140. DOI: 10.1007/s42976-020-00069-2.
22. Uranbey S., Akdoğan G., Ahmed H.A.A., Çalişkan M. The effects of different basal medium, combinations of auxin and cytokinin, solidification types and pre-cold treatments on embryonic callus and shoot development in bread wheat (Triticum aestivum L.) cultivars. Mustafa Kemal University Journal of Agricultural Sciences. 2020;25(2):127-137. (In Turkish). DOI: 10.37908/mkutbd.686209.
23. Fomenko N.G., Zholobova O.O. Induction of callusogenesis and indirect morphogenesis in the Populus deltoides Marshall × Populus alba L. hybrid in vitro. Scientific Agronomy Journal. 2024;2:76-81. (In Russian). DOI: 10.34736/FNC.2024.125.2.011.76-81. EDN: VWPZNU.
24. Klimek-Chodacka M., Kadluczka D., Lukasiewicz A., Malec-Pala A., Baranski R., Grzebelus E. Effective callus induction and plant regeneration in callus and protoplast cultures of Nigella damascena L. Plant Cell, Tissue and Organ Culture. 2020;143:693-707. DOI: 10.1007/s11240-020-01953-9.
25. Adonina I.G., Zorina M.V., Mehdiyeva S.P., Leonova I.N., Komyshev E.G., Timonova E.M., et al. Characteristics of the synthetic line of wheat – a potential source of agronomically valuable traits. Letters to the Vavilov Journal of Genetics and Breeding. 2023;9(3):117-125. (In Russian). DOI: 10.18699/LettersVJ-2023-9-15. EDN: KIZMRF.
26. Gumerova G.R., Galimova A.A., Kuluev B.R. Bread wheat callusogenesis and organogenesis using mature embryos as explants. Proceedings on applied botany, genetics and breeding. 2023;184(2):19-28. (In Russian). DOI: 10.30901/2227-8834-2023-2-19-28. EDN: MDONSA.
27. Trushina N.A., Pecherina A.A., Vodeneev V.A., Brilkina A.A. Analysis of the regeneration potential of several varieties of bread spring wheat Triticum aestivum L. in vitro culture. Biomics. 2023;15(4):263-271. (In Russian). DOI: 10.31301/2221-6197.bmcs.2023-23. EDN: QFOTRE.
28. Fatine M., Houda E.Y., Younes E.G., Atmane R. Efficient callogenesis and plant regeneration in bread wheat (Triticum aestivum L.) varieties. Acta fytotechnica et zootechnica. 2023;26(3):273-284. DOI: 10.15414/afz.2023.26.03.273-284.
29. Türkoğlu A., Haliloğlu K., Demirel F., Aydin M., Çiçek S., Yiğider E., et al. Machine learning analysis of the impact of silver nitrate and silver nanoparticles on wheat (Triticum aestivum L.): callus induction, plant regeneration, and DNA methylation. Plants. 2023;12(24):4151. DOI: 10.3390/plants12244151.
30. Sarıgül K., Haliloğlu K., Türkoğlu A., Nadaroğlu H., Alaylı A. Ce2O3 nanoparticle synthesis, characterization, and application to callus formation and plant regeneration from mature embryo culture of wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture. 2024;158:49. DOI: 10.1007/s11240-024-02842-1.
31. Muratova S.A., Khoroshkova Yu.V. In vitro callus induction and adventitious shoot regeneration from leaf explants of Heuchera hybrid. Timiryazev Biological Journal. 2023;2:28-36. (In Russian). DOI: 10.26897/2949-4710-2023-2-28-36. EDN: KMCNDK.
32. Zulueta-Rodríguez R., Hernandez-Montiel L.G., Murillo-Amador B., Rueda-Puente E.O., Capistrán L.L., Troyo-Diguez E., et al. Effect of hydropriming and biopriming on seed germination and growth of two Mexican fir tree species in danger of extinction. Forests. 2015;6(9):3109-3122. DOI: 10.3390/f6093109.
33. Bareke T. Biology of seed development and germination physiology. Advances in Plants & Agricultural Research. 2018;8(4):336-346. DOI: 10.15406/apar.2018.08.00335.
34. Marthandan V., Geetha R., Kumutha K., Renganathan V.G., Karthikeyan A., Ramalingam J. Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences. 2020;21(21):8258. DOI: 10.3390/ijms21218258.
35. Afzal I., Rauf S., Basra S.M.A., Murtaza G. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant, Soil and Environment. 2008;54(9):382-388. DOI: 10.17221/408-PSE.
36. Jafar M.Z., Farooq M., Cheema M.A., Afzal I., Basra S.M.A., Wahid M.A., et al. Improving the performance of wheat by seed priming under saline conditions. Journal of Agronomy and Crop Sciences. 2012;198(1):38-45. DOI: 10.1111/j.1439-037X.2011.00485.x.
Review
For citations:
Fedotov P.A., Lyubushkina I.V. Effect of culture medium and physiological state of the explant on callus formation and development in winter and spring wheat (Triticum aestivum L.). Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(1):42-50. (In Russ.) https://doi.org/10.21285/achb.967. EDN: ZHJMGT