Self-reinforced polymer composites based on polytetrafluoroethylene
https://doi.org/10.21285/achb.960
EDN: PTTHNY
Abstract
The development of self-reinforced polymer composites, representing a relatively new group of composite materials, is a promising direction in the field of polymer chemistry. The method of self-reinforcement is used to combine the materials of a single polymer possessing different molecular, supramolecular, and structural features. The high adhesion and mechanical properties of such self-reinforced composites are achieved by the formation of a homogeneous system without an interfacial boundary. In addition, self-reinforcement offers the opportunity of using polymer waste for manufacturing high-strength composites, thus contributing to environmental load mitigation. In this work, we investigate the phase composition and properties of self-reinforced polymer composites based on polytetrafluoroethylene. Self-reinforced composites were prepared by mixing powders of industrial and recycled polytetrafluoroethylene followed by compression molding and pressureless sintering. The crystallinity degree of the as-obtained materials calculated by X-ray phase analysis equaled 41–68%. The performed dynamic mechanical analysis showed that the introduction of a powder of regenerated polytetrafluoroethylene into industrial polytetrafluoroethylene increases the elastic modulus of the obtained materials significantly (up to 2.0–3.1 GPa). The study of deformation and strength characteristics confirmed the feasibility of using up to 30 wt% of recycled polytetrafluoroethylene, obtained by mechanical abrasion, for manufacturing composites with good performance properties. The findings also indicate that the phase composition of the material depends on the method of polymer waste processing, determining the heat resistance and mechanical properties of the obtained self-reinforced polymer composites.
Keywords
About the Authors
O. Zh. AyurovaRussian Federation
Oksana Zh. Ayurova, Cand. Sci. (Engineering), Associate Professor
24a, Smolin St., Ulan-Ude, 670000;
Senior Researcher
6, Sakh’yanova St., Ulan-Ude, 670047
V. N. Kornopoltsev
Russian Federation
Vasiliy N. Kornopoltsev, Cand. Sci. (Engineering), Researcher
6, Sakh’yanova St., Ulan-Ude, 670047
E. V. Kovtunets
Russian Federation
Evgeny V. Kovtunets, Researcher
6, Sakh’yanova St., Ulan-Ude, 670047
M. A. Nevodov
Russian Federation
Mikhail A. Nevodov, Master’s Student
24a, Smolin St., Ulan-Ude, 670000
E. T. Pavlova
Russian Federation
Erzhena T. Pavlova, Cand. Sci. (Chemistry), Associate Professor, Head of the Department
24a, Smolin St., Ulan-Ude, 670000
B. Z. Garmaev
Russian Federation
Bair Z. Garmaev, Cand. Sci. (Physics and Mathematics), Head of the Laboratory
6, Sakh’yanova St., Ulan-Ude, 670047
References
1. Keskisaari A., Butylina S., Kärki T. Use of construction and demolition wastes as mineral fillers in hybrid wood–polymer composites. Journal of Applied Polymer Science. 2016;133(19). DOI: 10.1002/app.43412.
2. Singh M.K., Mohanty A.K., Misra M. Upcycling of waste polyolefins in natural fiber and sustainable filler-based biocomposites: a study on recent developments and future perspectives. Composites Part B: Engineering. 2023;263:110852. DOI: 10.1016/j.compositesb.2023.110852.
3. Babu K., Mensah R.A., Shanmugam V., Rashedi A., Athimoolam P., Aseer J.R., et al. Self-reinforced polymer composites: an opportunity to recycle plastic wastes and their future trends. Journal of Applied Polymer Science. 2022;139(46):e53143 DOI: 10.1002/app.53143.
4. Kmetty Á., Bárány T., Karger-Kocsis J. Self-reinforced polymeric materials: a review. Progress in Polymer Science. 2010;35(10):1288-1310. DOI: 10.1016/j.progpolymsci.2010.07.002.
5. Swolfs Y., Zhang Q., Baets J., Verpoest I. The influence of process parameters on the properties of hot compacted self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing. 2014;65:38-46. DOI: 10.1016/j.compositesa.2014.05.022.
6. Ku H., Wang H., Pattarachaiyakoop N., Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering. 2011;42(4):856-873. DOI: 10.1016/j.compositesb.2011.01.010.
7. Andrzejewski J., Przyszczypkowski P., Szostak M. Development and characterization of poly(ethylene terephthalate) based injection molded self-reinforced composites. Direct reinforcement by overmolding the composite inserts. Materials & Design. 2018;153:273-286. DOI: 10.1016/j.matdes.2018.04.084.
8. Zhao Z.H., Chen J.N. Preparation of singlepolytetrafluoroethylene composites by the processes of compression molding and free sintering. Composites Part B: Engineering. 2011;42(5):1306-1310. DOI: 10.1016/j.compositesb.2011.01.005.
9. Törmälä P. Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clinical Materials. 1992;10(1-2):29-34. DOI: 10.1016/0267-6605(92)90081-4.
10. Zhang M., Tian X., Cao H., Liu T., Zia A.A., Li D. 3D printing of fully recyclable continuous fiber self-reinforced composites utilizing supercooled polymer melts. Composites Part A: Applied Science and Manufacturing. 2023;169:107513. DOI: 10.1016/j.compositesa.2023.107513.
11. Kornopol’tsev V.N., Ayurova O.Z., Dashitsyrenova M.S., Il’ina O.V., Mognonov D.M. Preparation, study, and use of composites based on fluoropolymer waste. Zhurnal prikladnoi khimii. 2021;94(7):873-878. (In Russian). DOI: 10.31857/S004446182107001X. EDN: OQUWJS.
12. Ayurova O., Kornopoltsev V., Khagleev A., Kurbatov R., Mishigdorzhiyn U., Dyakonov A., et al. Wear-resistant elastomeric composites based on unvulcanized rubber compound and recycled polytetrafluoroethylene. Lubricants. 2024;12(2):29. DOI: 10.3390/lubricants12020029.
13. Lebedev Yu.A., Korolev Yu.M., Rebrov A.V., Ignat’eva L.N., Antipov E.M. X-ray study of the crystalline phase in polytetrafluoroethylene samples. Kristallografiya. 2010;55(4):657-662. (In Russian). EDN: MSQJUT.
14. Yassien K.M., El-Zahhar A.A. Investigation on the properties of gamma irradiated of polytetrafluoroethylene fibers. Microscopy: Research & Technique. 2019;82(12):2054-2060. DOI: 10.1002/jemt.23377.
15. Lunkwitz K., Lappan U., Scheler U. Modification of perfluorinated polymers by high-energy irradiation. Journal of Fluorine Chemistry. 2004;125(6):863-873. DOI: 10.1016/j.jfluchem.2004.01.020.
16. Brown E.N., Rae P.J., Orler E.B., Gray G.T., Dattelbaum D.M. The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE). Materials Science and Engineering: C. 2006;26(8):1338-1343. DOI: 10.1016/j.msec.2005.08.009.
17. Henri V., Dantras E., Lacabanne C., Dieudonne A., Koliatene F. Thermal ageing of PTFE in the melted state: Influence of interdiffusion on the physicochemical structure. Polymer Degradation and Stability. 2020;171:109053. DOI: 10.1016/j.polymdegradstab.2019.109053.
18. Holt D.B., Farmer B.L. Modeling of helix reversal defects in polytetrafluoroethylene: II. Molecular dynamics simulations. Polymer. 1999;40(16):4673-4684. DOI: 10.1016/S0032-3861(99)00076-2.
19. Askadskii A.A., Matseevich T.A. Influence of the degree of crystallinity on the elastic modulus in rubbery state of polymers. Plasticheskie massy. 2022;3-4:11-15. (In Russian). DOI: 10.35164/0554-2901-2022-3-4-11-15. EDN: NJJZWP.
20. Blumm J., Lindemann A., Meyer M., Strasser C. Characterization of PTFE using advanced thermal analysis techniques. International Journal of Thermophysics. 2010;31:1919-1927. DOI: 10.1007/s10765-008-0512-z.
21. Ayurova O.Zh., Kozhevnikova N.M., Kornopol’tsev V.N., Mognonov D.M. Thermophysical properties of the polymer composite polytetrafluoroethylene/CaF2-oxyfluoride glass. Zhurnal prikladnoi khimii. 2022;95(3):337-343. DOI: 10.31857/S0044461822030057. EDN: DEWDAL.
Review
For citations:
Ayurova O.Zh., Kornopoltsev V.N., Kovtunets E.V., Nevodov M.A., Pavlova E.T., Garmaev B.Z. Self-reinforced polymer composites based on polytetrafluoroethylene. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(1):128-136. (In Russ.) https://doi.org/10.21285/achb.960. EDN: PTTHNY