Electrokinetic characteristics of electrodeionization purification and concentration of electroplating solutions containing cobalt, copper, and cadmium ions
https://doi.org/10.21285/achb.972
EDN: UADNVO
Abstract
In this work, we investigate the electrochemical and electrokinetic characteristics of electrodeionization extraction of cobalt, copper, and cadmium ions from process solutions of electroplating plants for subsequent recycling. The research objects were selected following a review of publications on the possibility of using electromembrane methods for purification and concentration of industrial wastes. The current–voltage characteristics of the electrodeionization process were studied experimentally. The I–V curves showed the presence of a minimal linear ohmic section at voltages from 1 to 3 V and a plateau with a slight upward slope at the section from 3 to 5 V. Under a further increase in voltage, a region of supercritical current is observed, which is related to the formation of H+ and OH- ions at the membrane–ion-exchange resin interfaces. The kinetic dependencies of the concentrations of retained substances on the residence time in the desalting and concentration chambers of the electrodeionization unit at different current densities and flow rates were analyzed. At a low current density of 5 A/m2, three main sections were observed: (1) in the range from 0 to 900 s, where ion accumulation on ion-exchange membranes in desalting and concentration chambers occurs; (2) in the range from 900 to 2700 s, where intensive ion transfer is observed; (3) in the range from 2700 to 3600 s, where electrochemical regeneration of ions in purification chambers takes place. The results obtained were used to develop a technological scheme for wastewater treatment from heavy metal ions.
Keywords
About the Authors
S. I. LazarevRussian Federation
Sergey I. Lazarev, Dr. Sci. (Engineering), Head of the Department
Room 2, 106/5, Sovetskaya St., Tambov, 392000
I. V. Khorokhorina
Russian Federation
Irina V. Khorokhorina, Dr. Sci. (Engineering), Associate Professor
Room 2, 106/5, Sovetskaya St., Tambov, 392000
M. I. Mikhailin
Russian Federation
Maxim I. Mikhailin, Postgraduate Student
Room 2, 106/5, Sovetskaya St., Tambov, 392000
O. S. Filimonova
Russian Federation
Olga S. Filimonova, Postgraduate Student
Room 2, 106/5, Sovetskaya St., Tambov, 392000
References
1. Li S., Dai M., Wu Y., Fu H., Hou X., Peng C., et al. Resource utilization of electroplating wastewater: obstacles and solutions. Environmental Science: Water Research & Technology. 2022;8:484-509. DOI: 10.1039/D1EW00712B.
2. Kruglikov S.S., Arkhipov E.A., Zhirukhin D.A., Smirnov K.N., Vagramyan T.A., Kolesnikov V.A., et al. Increasing the efficiency of electromembrane processes in the area of electrochemical cadmium plating. Teoreticheskie osnovy khimicheskoi tekhnologii. 2021;55(3):286-290. (In Russian). DOI: 10.31857/S0040357121030106. EDN: EGWNHO.
3. Yakovleva M.R., Nikulina O.K., Koloskova O.V., Dymar O.V. Comparative assessment of electrodialysis and electrodeionization processes. Food Industry: Science and Technology. 2023;16(4):61-68. (In Russian). EDN: DFYPER.
4. Lazarev S.I., Khorokhorina I.V., Mikhailin M.I., Filimonova O.S. Extraction of heavy metals from washing waters of electroplating industries and calculation method of electrodeionization apparatus. Chemical and Petroleum Engineering. 2023;59:174-181. DOI: 10.1007/s10556-023-01224-2.
5. Koseoglu-Imer D.Y., Karagunduz A. Recent developments of electromembrane desalination processes. Environmental Technology Reviews. 2018;7(1):199-219. DOI: 10.1080/21622515.2018.1483974.
6. Zabolotskii V.I., Utin S.V., Sheldeshov N.V., Lebedev K.A., Vasilenko P.A. Correction of pH of diluted solutions of electrolytes by electrodialysis with bipolar membranes. Elektrokhimiya. 2011;47(3):343-348. (In Russian). EDN: NDPAMB.
7. Shestakov K.V., Lazarev S.I., Polyanskii K.K., Ignatov N.N. Recovery of iron, nickel, and copper in waste water from printed circuit board manufacture by electrodialysis method. Russian Journal of Applied Chemistry. 2021;94:555-559. DOI: 10.1134/S1070427221050013.
8. Zhao C., Zhang L., Ge R., Zhang A., Zhang C., Chen X. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology. Chemosphere. 2019;217:763-772. DOI: 10.1016/j.chemosphere.2018.11.071.
9. Gulyaeva E.S., Berengarten M.G. Transport of ions through ion-exchange membrane in the course of electrodialysis concentration. Water: Chemistry and Ecology. 2011;10:77-81. (In Russian). EDN: OIMIJD.
10. Demir G., Mert A.N., Arar Ö. Utilization of electrodeionization for lithium removal. ACS Omega. 2023;8(20):17583-17590. DOI: 10.1021/acsomega.2c08095.
11. Chesnokov A.N., Zhamsaranzhapova T.D., Zakarchevskiy S.A., Kulshrestha V., Skornikova S.A., Makarov S.S., et al. Effect of zeolite content on proton conductivity and technical characteristics of the membranes based on crosslinked polyvinyl alcohol. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):360-367. (In Russian). DOI: 10.21285/2227-2925-2020-10-2-360-367. EDN: AMJLOB.
12. Sedneva T.A., Ivanenko V.I., Belikov M.L. Electromembrane recycling of technological solutions with reception of standard acids and alkalis. Transactions of the Kola Science Centre of RAS. 2018;9(2-1):349-352. (In Russian). DOI: 10.25702/KSC.2307-5252.2018.9.1.349-352. EDN: XYENHV.
13. Krasnova T.A. Experience of use of electrodialysis for processing of wastewater organic production. Sorbtsionnye i khromatograficheskie protsessy. 2012;12(3):419-427. (In Russian). EDN: NMNKYS.
14. Dudarev V.I., Minaeva L.A. Use of carbon sorbents to extract manganese from solutions. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(1):35-40. (In Russian). DOI: 10.21285/achb.897. EDN: NNHBMP.
15. Bykov V.I., Ilyina S.I., Loginov V.Ya., Ravichev L.V., Svitzov A.A. Electrodialysis: history and development prospects. Herald of Technological University. 2021;24(7):5-10. (In Russian). EDN: YWLUSF.
16. Mikhaylin M.I., Lazarev S.I., Khorokhorina I.V., Polyansky K.K. Investigation of the volt-ampere characteristics of the electrodeionization process with the use of different ion-exchange fillers. Herald of Technological University. 2022;25(7):60-63. (In Russian). DOI: 10.55421/1998-7072_2022_25_7_60. EDN: RHNJDI.
17. Gavrilova T.G., Kondrat’ev S.A. Development of activation mechanism of sulphide flotation by heavy metal ions. In: Innovatsionnye protsessy kompleksnoi pererabotki prirodnogo i tekhnogennogo mineral’nogo syr’ya (Plaksinskie chteniya – 2020): materialy Mezhdunar. konf. = Innovative processes of complex treatment of natural and man-made mineral raw materials (Plaksin readings – 2020): Proc. of Int. Conf. 21–26 September 2020, Apatity. Apatity: Federal Research Center, Kola Scientific Center of the Russian Academy of Sciences; 2020, p. 147-149. (In Russian).
18. Ren Y., Han Y., Lei X, Lu C., Liu J, Zhang G., et al. A magnetic ion exchange resin with high efficiency of removing Cr (VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;604:125279. DOI: 10.1016/j.colsurfa.2020.125279.
19. Zabolotskii V.I., Lebedev K.A., Urtenov M.K., Nikonenko V.V., Vasilenko P.A., Shaposhnik V.A., et al. Mathematical model describing voltammograms and transport numbers under intensive electrodialysis modes. Elektrokhimiya. 2013;49(4):416-427. (In Russian). DOI: 10.7868/S0424857013040142. EDN: PWNFKJ.
20. Eliseeva T.V., Kharina A.Y. Voltammetric and transport characteristics of anion-exchange membranes during electrodialysis of solutions containing alkylaromatic amino acid and a mineral salt. Elektrokhimiya. 2015;51(1):74-80. (In Russian). DOI: 10.7868/S0424857015010041. EDN: TCJCRZ.
21. Ovsyannikova D.V., Bondareva L.P., Selemenev V.F., Karpov S.I. Equilibrium sorption of methionine on carboxyl cation exchangers from solutions of various acidities. Zhurnal fizicheskoi khimii. 2009;83(5):961-966. (In Russian). EDN: KAVNWD.
22. Nikonenko V.V., Pis’menskaya N.D., Volodina E.I. Rate of generation of ions H<sup>+</sup> and OH<sup>–</sup> at the ion-exchange membrane/dilute solution interface as a function of the current density. Elektrokhimiya. 2005;41(11):1351-1357. (In Russian). EDN: HSIUHJ.
23. Tkachenko D.O., Zazhigaeva K.V. Application of electrodeionization units in water treatment practice at thermal power plants. Novaya nauka: ot idei k rezul’tatu. 2016;4-1:87-89. (In Russian). EDN: VVHEFL.
24. Fedorenko V.I. Ultrapure water production using continuous electrodeionization. Khimiko-farmatsevticheskii zhurnal. 2003;37(3):49-52. (In Russian). EDN: SVZNWZ.
Review
For citations:
Lazarev S.I., Khorokhorina I.V., Mikhailin M.I., Filimonova O.S. Electrokinetic characteristics of electrodeionization purification and concentration of electroplating solutions containing cobalt, copper, and cadmium ions. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(2):269-278. (In Russ.) https://doi.org/10.21285/achb.972. EDN: UADNVO