Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Acetaminophen-induced liver and kidney injuries in mice: treatment with Alpinia officinarum rhizome

https://doi.org/10.21285/achb.973

EDN: BXZACK

Abstract

Paracetamol (acetaminophen) is widely used around the world as both an analgesic and antipyretic medication. It is effective and safe when taken in therapeutic doses; however, overdosing can result in liver and kidney toxicity in both humans as well as animals. Medicinal plants are important sources of nutrition and healthcare for humans, and many of them have demonstrated protective effects against liver and kidney injuries. This research investigates the liver and kidney protective effects of various Alpinia officinarum (galangal, I) extracts in mice exposed to acetaminophen. Specifically, it examines the effects of extracts obtained using different solvents, including polar and nonpolar organic solvents and aqueous solutions. The study’s findings indicated that essential oil, hydroethanolic, and chloroform extracts have the most significant protective effects on the liver and kidney. These protective effects may attributed to the presence of flavonoids, alkaloids, terpenoids, fatty acids, and phytosterols in these extracts. In conclusion, essential oil, hydroethanol, and chloroform used for the extraction of galangal rhizome effectively isolated various bioactive components, which provided substantial protection against the liver and kidney injuries caused by paracetamol in mice.

About the Authors

A. Delavar
Islamic Azad University
Islamic Republic of Iran

Azin Delavar, M. Sc., Assistant, Department of Chemistry

Imam Ali Complex, Moazen Blvd., Karaj, 3149968111, Iran



S. Shahami
Islamic Azad University
Islamic Republic of Iran

Somayeh Shahami, M. Sc., Assistant, Department of Chemistry

Imam Ali Complex, Moazen Blvd., Karaj, 3149968111, Iran



A. Sobhanian
Islamic Azad University
Islamic Republic of Iran

Ali Sobhanian, Dr. Sci. (Pharmacy), Associate Professor, Department of Pharmaceutical Sciences

Zargandeh, Dr. Shariati St., Tehran, 1949635881, Iran



A. Ahmadi
Islamic Azad University
Islamic Republic of Iran

Abbas Ahmadi, Dr. Sci. (Chemistry), Professor, Department of Chemistry

Imam Ali Complex, Moazen Blvd., Karaj, 3149968111, Iran



M. Roghani
Neurophysiology Research Center, Shahed University
Islamic Republic of Iran

Mehrdad Roghani, Dr. Sci. (Physiology), Professor

1471, North Kargar Ave., Tehran, 3319118651, Iran



References

1. Kaplowitz N. Drug-induced liver disorders: implications for drug development and regulation. Drug Safety. 2001;24:483-490. DOI: 10.2165/00002018-200124070-00001.

2. Maddrey W. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Gastroenterology. 2000;118(5):984-985. DOI: 10.1016/S0016-5085(00)70192-2.

3. Kaplowitz N. Drug-induced liver injury. Clinical Infectious Diseases. 2004;38(sup.2):S44-S48. DOI: 10.1086/381446.

4. Perazella M.A. Pharmacology behind common drug nephrotoxicities. Clinical Journal of the American Society of Nephrology. 2018;13(12):1897-1908. DOI: 10.2215/cjn.00150118.

5. Stern S.T., Bruno M.K., Hennig G.E., Horton R.A., Roberts J.C., Cohen S.D. Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity in CD-1 mice: I. Enhancement of acetaminophen nephrotoxicity by acetaminophen-cysteine. Toxicology and Applied Pharmacology. 2005;202(2):151-159. DOI: 10.1016/j.taap.2004.06.030.

6. Jaeschke H., Bajt M.L. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicological Sciences. 2006;89(1):31-41. DOI: 10.1093/toxsci/kfi336.

7. He M., Zhang S., Jiao Y., Lin X., Huang J., Chen C., et al. Effects and mechanisms of rifampin on hepatotoxicity of acetaminophen in mice. Food and Chemical Toxicology. 2012;50(9):3142-3149. DOI: 10.1016/j.fct.2012.06.020.

8. Gao C., Liu C., Chen Y., Wang Q., Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: a review in recent years. Food and Chemical Toxicology. 2021;153:112255. DOI: 10.1016/j.fct.2021.112255.

9. Liao J., Lu Q., Li Z., Li J., Zhao Q., Li J. Acetaminophen-induced liver injury: molecular mechanism and treatments from natural products. Frontiers in Pharmacology. 2023;14:1122632. DOI: 10.3389/fphar.2023.1122632.

10. Ding P., Yang L., Feng C., Xian J. Research and application of Alpinia officinarum in medicinal field. Chinese Herbal Medicines. 2019;11(2):132-140. DOI: 10.1016/j.chmed.2019.04.003.

11. Ahmed M., Riaz S., Ahmad A., Farooq R., Mubeen U., Hussain M., et al. Alpinia officinarum (Galangal): a beneficial plant. Journal of Medicine and Public Health. 2023;4(1):1057.

12. Amraoui W., Adjabi N., Bououza F., Boumendjel M., Taibi F., Boumendjel A., et al. Modulatory role of selenium and vitamin E, natural antioxidants, against bisphenol a-induced oxidative stress in Wistar albinos rats. Toxicological Research. 2018;34:231-239. DOI: 10.5487/tr.2018.34.3.231.

13. Zuo X., Gao L., Peng X., Dong L., Huang M., Hu T., et al. Unveiling the role of mtDNA in Liver-Kidney Crosstalk: insights from trichloroethylene hypersensitivity syndrome. International Immunopharmacology. 2024;138:112513. DOI: 10.1016/j.intimp.2024.112513.

14. An Q., Ren J.-N., Li X., Fan G., Qu S.-S., Song Y., et al. Recent updates on bioactive properties of linalool. Food & Function. 2021;12(21):10370-10389. DOI: 10.1039/D1FO02120F.

15. Ahmadi A., Khalili M., Margedari S., Nahri-Niknafs B. Antidiabetic and antilipidemic effects of some polar and nonpolar extracts of Securigera securidaca flowers. Pharmaceutical Chemistry Journal. 2016;49:753-759. DOI: 10.1007/s11094-016-1365-6.

16. Ahmadi A., Khalili M., Mashaee F., Nahri-Niknafs B. The effects of solvent polarity on hypoglycemic and hypolipidemic activities of Vaccinium arctostaphylos L. unripe fruits. Pharmaceutical Chemistry Journal. 2017;50:746-752. DOI: 10.1007/s11094-017-1524-4.

17. Ahmadi A., Khalili M., Roghani A., Behi A., Nazirzadeh S. The effects of solvent polarity on hypoglycemic and hypolipidemic activities of Portulaca oleracea and Achillea eriophora DC extracts. Pharmaceutical Chemistry Journal. 2021;54:1243-1254. DOI: 10.1007/s11094-021-02350-y.

18. Ahmadi A., Roghani M., Parsianfard M., Seyedmomeni F., Gheraati S., Sobhanian S.A. Antihyperglycemic and antihyperlipidemic evaluation of Zingiber officinale, Anethum graveolens and Citrullus colocynthis extracts with different polarities in streptozotocin-induced diabetic rats. Pharmaceutical Chemistry Journal. 2022;55:1062-1070. DOI: 10.1007/s11094-021-02538-2.

19. Zheng H., Zhao J., Zheng Y., Wu J., Liu Y., Peng J., et al. Protective effects and mechanisms of total alkaloids of Rubus alceaefolius Poir on non-alcoholic fatty liver disease in rats. Molecular Medicine Reports. 2014;10(4):1758-1764. DOI: 10.3892/mmr.2014.2403.

20. Rui Y., Li S., Luan F., Li D., Liu R., Zeng N. Several alkaloids in Chinese herbal medicine exert protection in acute kidney injury: focus on mechanism and target analysis. Oxidative Medicine and Cellular Longevity. 2022:2427802. DOI: 10.1155/2022/2427802

21. Faria J., Ahmed S., Gerritsen K.G.F., Mihaila S.M., Masereeuw R. Kidney-based in vitro models for drug-induced toxicity testing. Archives of Toxicology. 2019;93:3397-3418. DOI: 10.1007/s00204-019-02598-0.

22. Downes K.J., Hayes M., Fitzgerald J.C., Pais G.M., Liu J., Zane N.R., et al. Mechanisms of antimicrobial-induced nephrotoxicity in children. Journal of Antimicrobial Chemotherapy. 2020;75(1):1-13. DOI: 10.1093/jac/dkz325.

23. Svenia P.J., Asha S., Krishnakumar I.M., Ratheesh M., Savitha S., Sandya S., et al. Nephro-protective effect of a novel formulation of unopened coconut inflorescence sap powder on gentamicin induced renal damage by modulating oxidative stress and inflammatory markers. Biomedicine & Pharmacotherapy. 2017;85:128-135. DOI: 10.1016/j.biopha.2016.11.117.

24. Xiang H., Song Y., Wang Y., Fu W., Xiao N. A novel NIR fluorescent probe for in situ visualizing Fe(II) and its application in drug-induced liver/kidney injury. Materials Advances. 2024;5(13):5624-5631. DOI: 10.1039/d4ma00361f.

25. Akakpo J.Y., Ramachandran A., Orhan H., Curry S.C., Rumack B.H., Jaeschke H. 4-Methylpyrazole protects against acetaminophen-induced acute kidney injury. Toxicology and Applied Pharmacology. 2020;409:115317. DOI: 10.1016/j.taap.2020.115317.

26. Zeng X., Chen J., Yu S., Liu Z., Ma M. A highly selective and sensitive “turn-on” fluorescent probe for Fe 2+ and its applications. Journal of Luminescence. 2022;250:119069. DOI: 10.1016/j.jlumin.2022.119069.

27. Wu L., Liu J., Tian X., Groleau R.R., Bull S.D., Li P., et al. Fluorescent probe for the imaging of superoxide and peroxynitrite during drug-induced liver injury. Chemical Science. 2021;12(11):3921-3928. DOI: 10.1039/d0sc05937d.

28. Guengerich F.P. Cytochrome P450 2E1 and its roles in disease. Chemico-Biological Interactions. 2020;322:109056. DOI: 10.1016/j.cbi.2020.109056.

29. Begriche K., Penhoat C., Bernabeu-Gentey P., Massart J., Fromenty B. Acetaminophen-induced hepatotoxicity in obesity and nonalcoholic fatty liver disease: a critical review. Livers. 2023;3(1):33-53. DOI: 10.3390/livers3010003.

30. Kalsi S.S., Wood D.M., Waring W.S., Dargan P.I. Does cytochrome P450 liver isoenzyme induction increase the risk of liver toxicity after paracetamol overdose? Open Access Emergency Medicine. 2011;3:69-76. DOI: 10.2147/oaem.S24962.

31. Marto N., Morello J., Antunes A.M.M., Azeredo S., Monteiro E.C., Pereira S.A. A simple method to measure sulfonation in man using paracetamol as probe drug. Scientific Reports. 2021;11:9036. DOI: 10.1038/s41598-021-88393-3.

32. Sharifi-Rigi A., Heidarian E., Amini S.A. Protective and anti-inflammatory effects of hydroalcoholic leaf extract of Origanum vulgare on oxidative stress, TNF-α gene expression and liver histological changes in paraquat-induced hepatotoxicity in rats. Archives of Physiology and Biochemistry. 2018;125(1):56-63. DOI: 10.1080/13813455.2018.1437186.

33. Park C.H., Lee A.Y., Kim J.H., Seong S.H., Jang G.Y., Cho E.J., et al. Protective effect of safflower seed on cisplatin-induced renal damage in mice via oxidative stress and apoptosis-mediated pathways. The American Journal of Chinese Medicine. 2018;46(1):157-174. DOI: 10.1142/s0192415x1850009x.

34. Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview. Journal of Nutritional Science. 2016;5:e47. DOI: 10.1017/jns.2016.41.

35. Tsai M.S., Chien C.C., Lin T.H., Liu C.-C., Liu R.H., Su H.-L., et al. Galangin prevents acute hepatorenal toxicity in novel propacetamol-induced acetaminophen-overdosed mice. Journal of Medicinal Food. 2015;18(11):1187-1197. DOI: 10.1089/jmf.2014.3328.

36. Zhu J., Wang Q., Li H., Zhang H., Zhu Y., Omari-Siaw E., et al. Galangin-loaded, liver targeting liposomes: optimization and hepatoprotective efficacy. Journal of Drug Delivery Science and Technology. 2018;46:339-347. DOI: 10.1016/j.jddst.2018.05.034.

37. Huang Y.-C., Tsai M.-S., Hsieh P.-C., Shih J.-H., Wang T.-S., Wang Y.-C., et al. Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicology and Applied Pharmacology. 2017;329:128-139. DOI: 10.1016/j.taap.2017.05.034.

38. Alruhaimi R.S., Ahmeda A.F., Hussein O.E., Alotaibi M.F., Germoush M.O., Elgebaly H.A., et al. Galangin attenuates chlorpyrifos-induced kidney injury by mitigating oxidative stress and inflammation and upregulating Nrf2 and farnesoid-X-receptor in rats. Environmental Toxicology and Pharmacology. 2024;110:104542. DOI: 10.1016/j.etap.2024.104542.


Review

For citations:


Delavar A., Shahami S., Sobhanian A., Ahmadi A., Roghani M. Acetaminophen-induced liver and kidney injuries in mice: treatment with Alpinia officinarum rhizome. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(2):167-177. https://doi.org/10.21285/achb.973. EDN: BXZACK

Views: 93


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)