Optimization of cultivation conditions for Lactobacillus acidophilus to produce lactic acid through molasses fermentation
https://doi.org/10.21285/achb.979
EDN: HQIHHZ
Abstract
Lactic acid and its salts (lactates) are used extensively in the food industry as acidity regulators and as raw materials for the synthesis of polylactide, a biodegradable packaging material. Currently, the prevailing method of producing lactic acid involves the biosynthetic pathway, using sugar-containing raw materials such as beet molasses. This study aims to examine the process of molasses bioconversion into lactic acid using the anaerobic strain Lactobacillus acidophilus AT-I. The concentrations of carbon (molasses) and nitrogen (yeast extract) were optimized using a central composite design experiment. The lactic acid content in the culture liquid was analyzed using capillary electrophoresis. The model was constructed in the R environment, and its adequacy was assessed using Fisher’s F-test. The findings demonstrated that the model adequately described the experimental data at a significance level of 0.05 (the variance of adequacy of the regression equation of 0.28, R2 = 0.76, the calculated value of the F-criterion (3.2) is less than the tabulated value (6.3)). According to the model, the highest conversion of molasses to lactate (5.6%) should be observed at a molasses concentration of 63 g/L and a yeast extract concentration of 1.9 g/L. The cultivation of Lactobacillus acidophilus AT-I in a bioreactor exhibited classical kinetics of carbohydrate breakdown and lactic acid accumulation, with lactic acid content reaching 5.5 g/L after 96 hours.
Keywords
About the Authors
A. P. NepomniashchiiRussian Federation
Anatolii P. Nepomniashchii, Postgraduate Student, Junior Researcher
55, Liteyny Ave., Saint Petersburg, 191014
I. N. Zubkov
Russian Federation
Ilya N. Zubkov, Laboratory Assistant
55, Liteyny Ave., Saint Petersburg, 191014
P. N. Sorokoumov
Russian Federation
Pavel N. Sorokoumov, Postgraduate Student, Researcher
55, Liteyny Ave., Saint Petersburg, 191014
N. Yu. Sharova
Russian Federation
Natalya Yu. Sharova, Dr. Sci. (Engineering), Professor of the Russian Academy of Sciences, Deputy Director for Research
55, Liteyny Ave., Saint Petersburg, 191014
References
1. Ayivi R.D., Gyawali R., Krastanov A., Aljaloud S.O., Worku M., Tahergorabi R., et al. Lactic acid bacteria: food safety and human health applications. Dairy. 2020;1(3):202-232. DOI: 10.3390/dairy1030015.
2. Rajeshkumar G., Seshadri S.A., Devnani G.L., Sanjay M.R., Siengchin S., Maran J.P., et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. Journal of Cleaner Production. 2021;310:127483. DOI: 10.1016/j.jclepro.2021.127483.
3. Juodeikiene G., Vidmantiene D., Basinskiene L., Cernauskas D., Bartkiene E., Cizeikiene D. Green metrics for sustainability of biobased lactic acid from starchy biomass vs chemical synthesis. Catalysis Today. 2015;239:11-16. DOI: 10.1016/j.cattod.2014.05.039.
4. Korcz E., Varga L. Exopolysaccharides from lactic acid bacteria: techno-functional application in the food industry. Trends in Food Science & Technology. 2021;110:375-384. DOI: 10.1016/j.tifs.2021.02.014.
5. Macedo J.V.C., de Barros Ranke F.F., Escaramboni B., Campioni T.S., Fernández Núñez E.G., de Oliva Neto P. Cost-effective lactic acid production by fermentation of agro-industrial residues. Biocatalysis and Agricultural Biotechnology. 2020;27:101706. DOI: 10.1016/j.bcab.2020.101706.
6. Tian X., Chen H., Liu H., Chen J. Recent advances in lactic acid production by lactic acid bacteria. Applied Biochemistry and Biotechnology. 2021;193:4151-4171. DOI: 10.1007/s12010-021-03672-z.
7. Bhattacharyya S.K., Palit S.K., Das A.R. Catalytic synthesis of lactic acid from acetaldehyde, carbon monoxide, and water. Industrial & Engineering Chemistry Product Research and Development. 1970;9(1):92-95. DOI: 10.1021/i360033a018.
8. Abdel-Rahman M.A., Tashiro Y., Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances. 2013;31(6):877-902. DOI: 10.1016/j.biotechadv.2013.04.002.
9. Polyanskii K.K., Shuvaeva G.P., Demenko N.D., Yakovlev V.F. Lactic acid production. Izvestiya vyzov. Food Technology. 1997;1:8-14. (In Russian). EDN: QAKEYZ.
10. Vasilinets I.M., Gadzhiev EH.A., Eveleva V.V., Filimonova I.N., Cherpalova T.M. Use of starch-containing raw materials in the production of food lactic acid. Izvestiya vyzov. Food Technology. 1998;4:60-62. (In Russian). EDN: QAKEYZ.
11. Aso Y., Hashimoto A., Ohara H. Engineering Lactococcus lactis for D-lactic acid production from starch. Current Microbiology. 2019;76(10):1186-1192. DOI: 10.1007/s00284-019-01742-4.
12. Abdel-Rahman M.A., Hassan S.E.-D., Alrefaey H.M.A., El-Belely E.F., Elsakhawy T., Fouda A., et al. Subsequent improvement of lactic acid production from beet molasses by Enterococcus hirae ds10 using different fermentation strategies. Bioresource Technology Reports. 2021;13:100617. DOI: 10.1016/j.biteb.2020.100617.
13. Wang Y., Deng W., Wang B., Zhang Q., Wan X., Tang Z., et al. Chemical synthesis of lactic acid from cellulose catalysed by lead (II) ions in water. Nature Communications. 2013. Vol. 4. P. 2141. DOI: 10.1038/ncomms3141.
14. Ahmad A., Banat F., Taher H. A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environmental Technology & Innovation. 2020;20:101138. DOI: 10.1016/j.eti.2020.101138.
15. Palmonari A., Cavallini D., Sniffen C.J., Fernandes L., Holder P., Fagioli L., et al. Characterization of molasses chemical composition. Journal of Dairy Science. 2020;103(7):6244-6249. DOI: 10.3168/jds.2019-17644.
16. Shipovskaya E.A., Eveleva V.V., Cherpalova T.M. Biosynthetic activity study of Lactobacillus acidophilus lactic acid bacteria in the lactose fermentation of whey. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):635-642. (In Russian). DOI: 10.21285/2227-2925-2019-9-4-635-642. EDN: QJPYTD.
17. Manoochehri H., Fayazi N., Saidijam M., Taheri M., Rezaee H., Nouri F. A review on invertase: its potentials and applications. Biocatalysis and Agricultural Biotechnology. 2020;25:101599. DOI: 10.1016/j.bcab.2020.101599.
18. De Ginés S.C., Maldonado M.C., de Valdez G.F. Purification and characterization of invertase from Lactobacillus reuteri CRL 1100. Current Microbiology. 2000;40(3):181-184. DOI: 10.1007/s002849910036.
19. Awad G.E., Amer H., El-Gammal E.W., Helmy W.A., Esawy M.A., Elnashar M.M. Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads. Carbohydrate Polymers. 2013;93(2):740-746. DOI: 10.1016/j.carbpol.2012.12.039.
20. Liu J., Cheng J., Huang M., Shen C., Xu K., Xiao Y., et al. Identification of an invertase with high specific activity for raffinose hydrolysis and its application in soymilk treatment. Frontiers in Microbiology. 2021;12:646801. DOI: 10.3389/fmicb.2021.646801.
Review
For citations:
Nepomniashchii A.P., Zubkov I.N., Sorokoumov P.N., Sharova N.Yu. Optimization of cultivation conditions for Lactobacillus acidophilus to produce lactic acid through molasses fermentation. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(2):279-285. (In Russ.) https://doi.org/10.21285/achb.979. EDN: HQIHHZ