Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

SULFONATION OF STYRENE - ALLYL GLYCIDYL ETHER COPOLYMERS

https://doi.org/10.21285/2227-2925-2018-8-4-13-23

Abstract

Sulfonated polymeric materials are widely applied in the development of high-performance proton-conducting membranes. In terms of sulphating agents, concentrated sulphuric- and chlorosulfonic acids, a mixture of methanesulfonic- and concentrated sulphuric acid, and acetyl sulphate are most commonly used. A high degree of sulfonation of membrane materials provides efficient proton transport and excellent current-voltage characteristics of fuel cells. In order to develop a new proton-conducting membrane, the sulfonation of copolymers of styrene and allyl glycidyl ether is carried out, the composition and structure were confirmed by elemental analysis, IR and NMR spectroscopy. Obtained copolymers represent powdery substances, having a cream to dark brown colour, and are characterised by good solubility in benzene and acetone. The degree of sulfonation varies from 12 to 98 mol. %. Additionally, a quantum chemical study of the sulfonation mechanism of styrene and allyl glycidyl ether copolymers is studied using Gaussian 09 software; MP2//B3LYP level of theory and 6-311++G(d,p) basis set and composite CBS-QB3 method. Studying the process of copolymers sulfonation and comparing the obtained results with the data of quantum chemical calculations is essential for the development of additional methods for obtaining effective proton-conducting membranes.

About the Authors

O. V. Lebedeva
Irkutsk National Research Technical University
Russian Federation


E. A. Malakhova
Angarsk State Technical University
Russian Federation


A. V. Kuzmin
Limnological Institute SB RAS; A.E. Favorsky Irkutsk Institute of Chemistry SB RAS
Russian Federation


A. N. Chesnokova
Irkutsk National Research Technical University
Russian Federation


E. I. Sipkina
Irkutsk National Research Technical University
Russian Federation


T. V. Raskulova
Angarsk State Technical University
Russian Federation


Yu. N. Pozhidaev
Irkutsk National Research Technical University
Russian Federation


V. .. Kulshrestha
CSIR-Centre Salt & Marine Chemicals Research Institute
Russian Federation


References

1. Yaroslavtsev A.B. Perfluorinated ion-exchange membranes. Polymer Science. Series A. 2013, vol. 55, no. 11, pp. 674-698. DOI: 10.1134/S0 965545X13110060

2. Yaroslavtsev A.B., Dobrovolsky Y.A., Frolova L.A., Gerasimova E.V.,Sanginov E.A., Shaglaeva N.S. Nanostructured materials for low-temperature fuel cells. Russian Chemical Reviews. 2013, vol. 81, no. 3, pp. 191-200. DOI: 10.1070/RC 2012v081n03 ABEH004290

3. Wang F., Roovers J. Functionalization of poly(aryl ether ether ketone) (PEEK): synthesis and properties of aldehyde and carboxylic acid substituted PEE. Macromolecules. 1993, vol. 26, pp. 5295-5302. DOI: 10.1002/pola.1994.080321302

4. Devaux J., Delimoy D., Daoust D., Legras R., Mercier J.P., Strazielle C., Nield E. On the molecular weight determination of a poly(aryl-ether-ether-ketone). Polymer. 1985, vol. 26, no. 13, pp. 1994-2000. DOI: 10.1016/0032-3861(85)90179-X

5. Gaur S.S., Dhar P., Kumar A., Katiyar V. Prospects of poly (vinyl alcohol)/Chitosan/poly (styrene sulfonic acid) and montmorillonite Cloisite (R) 30B clay composite membrane for direct methanol fuel cells. Journal of renewable and sustainable energy. 2014, vol. 6, No. 5, p. 053135. DOI: 10.10

6. /1.4899192

7. Pedroza O.J.O., Oscar J. O., Dutra J.C., Picciani P.H.S., Dias M.L. Morphology and proton conductivity of composite membranes based on poly(styrene sulfonic acid-maleic anhydride) nano-fibers prepared by electrospinning. IONICS. 2015, vol. 21, no. 3, pp. 755-764. DOI: 10.1007/s11581-014-1212-2

8. Sochilin V.A., Pebalk A.V., Semeniv V.I., Kardash I.E. Sulfonated poly-p-xylylene. Vysokomolekulyarnye soedineniya. Seriya А [Higher mo-lecular compounds. Series A]. 1991, vol. 33, no 7, pp. 1536-1542. (in Russian)

9. Sochilin V.A., Pebalk A.V., Semeniv V.I.,

10. Sevast’ianov M.A., Kardash I.E. Permeability and structure of poly-p-xylylene. Vysokomolekulyarnye soedineniya [Higher molecular compounds]. 1993, vol. 35, no. 9, pp. 1480-1485. (in Russian)

11. Bredas J.L., Chance R.R., Silbey R. Com-parative theoretical study of the doping conjugated polymers; Polarons in polyacetylene and polyparaphenylene. Physical Review B. 1982, vol. 26, no. 10, pp. 5843-5854. DOI: 10.1103/PhysRevB.26. 5843

12. Bailly C., Williams D.J., Karasz F.F., MacKnight W.J. The sodium salts of sulphonated poly(aryl-ether-ether-ketone) (PEEK): preparation and characterization. Polymer. 1987, vol. 28, no. 6, pp. 1009-1016. DOI: 10.1016/0032-3861(87)90178-9

13. Jin X., Bishop M.T., Ellis T.S., Karasz F.E. A sulphonated poly(aryl ether ketone). Polymer International Journal. 1985, vol. 17, no. 1. pp. 4-10. DOI: 10.1002/pi.4980170102

14. Litter M.I., Marvel C.S. Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4'dichloroformyldiphenyl ether. J. Polymer Sci., Polymer Chem. Edd. 1985, vol. 23, no. 8, pp.2205-2223. DOI: 10.1002/pol.1985.170230811

15. Ogawa T., Marvel C.S. Polyaromatic ether-ketones and ether-keto-sulfones having various hydrophilic groups. Journal of Polymer Science., Polymer Chemistry. 1985, vol. 23, no. 4, pp. 1231-1241. DOI: 10.1002/pol.1985.170230426

16. Nolte R., Ledjeff K., Bauer M., Mulhaupt R. Partially sulfonated poly(arylene ether sulfone) - a versatile proton conducting membrane material for modern energy-conversion technologies. J. Membr. Sci. 1993, vol. 83, no. 2, pp. 211-220. DOI: 10.1016/0376-7388(93)85268-2

17. Johnson B.C., Yilgor I., Tran C., Iqbal M., Wightman J.P., Lloyd D.R., McGrath J.E. Synthesis and characterization of sulfonated poly(acrylene ether sulfones). J. Polym. Sci, Part A: Polym. Chem. 1984, vol. 22, pp. 721-737. DOI: 10.1002/pol.1984. 170220320

18. Mottet C., Revillon A., Perchec P.L., Lauro M.E., Guyot A. Analogous reaction for maximum sulfonation of polysulfones. Polym. Bull. 1982, vol. 8, no. 11-12, pp. 511-517. DOI: 10.1007/BF00262929

19. Qi Z., Lefebvre M.C., Pickup P.G. Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers. J. Electroanalytical Chemistry. 1998, vol. 459, no. 1, pp. 9-14. DOI: 10.1016/S0022-0728(98)00241-1

20. Belomoina N.M., Rusanov A.L., Yanul’ N.A., Kirsch Yu. Ye. Thermoreactive sulfur containing polyphenylquinoxalines. Vysokomolekulyarnye soedineniya. Seriya B [Higher molecular compounds. Series B]. 1996, vol. 38, pp. 355-358. (in Russian)

21. Kirsch Yu. Ye., Yanul’ N.A., Belomoina N.M., Rusanov A.L. Electrochemical properties of cation-exchange membranes from sulfonate-containing polyphenylquinoxalines. Elektrokhimiya [Electrochemistry]. 1996, vol. 35, no. 2, pp. 169. (in Russian)

22. Srarkov V.V. Silicon-based monolithic fuel elements. Nano- i mikrosistemnaya tekhnika [Nano- and microsystem technique]. 2006, vol. 3, pp. 26-30. (in Russian)

23. Schwaben H.D. Polystyrene (PS). Kunststoffe - Plast Europe. 1999, vol. 89, no. 10, рр. 52-56.

24. Dobrovolsky Yu.A., Volkov E.V., Pisareva A.V., Fedotov Yu.A., Lihachev D.Yu., Rusanov A.L. Proton-exchange membranes for hydrogen-air fuel cells. Rossijskij khimicheskij zhurnal [Russian chemical bulletin]. 2006, no. 6, pp. 95-104. (in Russian)

25. Lebedeva O.V., Sipkina E.I., Chesnokova A.N., Maksimenko S.D., Pozhidaev Y.N., Rzhechit-skiy A.E., Ivanov N.A., Malahova E.A., Raskulova T.V., Kuzmin A.V. Ion exchange membranes based on silica and sulfonated copolymers of styrene with allyl glycidyl ether. Petroleum chemistry. 2017, vol. 57, no. 9, pp. 763-769. DOI: 10.1134/S096554 4117090067

26. Kreuer K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science. 2001, vol. 185, pp. 29-39. DOI: 10.1016/S0 376-7388(00)00632-3

27. Malakhova E., Chernigovskaya M., Ras-kulova T. New proton-conductive membranes for fuel cells based on hybrid composites. Procedia Engineering. 2015, vol. 113, рp. 441-445. DOI: 10.1016/j.proeng.2015.07.328

28. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P.,

29. Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D J. Gaussian, Inc., Wallingford CT, 2009.

30. Becke A.D. Density-functional thermo-chemistry. III. The role of exact exchange. J. Chem. Phys. 1993, vol. 98, no. 7, pp. 56485652. DOI: 10.1063/1.464913

31. McLean A.D., Chandler G.S. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18. J. Chem. Phys. 1980, vol. 72, pp. 5639-5648. DOI: 10.1063/1.438980

32. Head-Gordon M., Pople J.A., Frisch M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1980, vol. 153, pp. 503506. DOI: 10.10 16/0009-2614(88)85250-3

33. Miertuš S., Scrocco E., Tomasi J. Electrostatic interaction of a solute with a continuum. A Direct Utilization of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, vol. 55, no. 1, pp. 117-129. DOI: 10.1016/03 01-0104(81)85090-2

34. Fukui K. The path of chemical-reactions - The IRC approach. Acc. Chem. Res. 1981, vol. 14, pp. 363368. DOI: 10.1021/ar00072a001

35. Bamford C.H., Tipper C.F.H. Comprehensive chemical kinetics. New York. Elsevier Scientific Publishing Company,1972. Vol. 13. 508 p.

36. Montgomery Jr. J. A., Frisch M. J., Ochterski J. W., Petersson G. A. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 2000, vol. 112, pp. 6532-6542. DOI: 10.1063/1.481224


Review

For citations:


Lebedeva O.V., Malakhova E.A., Kuzmin A.V., Chesnokova A.N., Sipkina E.I., Raskulova T.V., Pozhidaev Yu.N., Kulshrestha V... SULFONATION OF STYRENE - ALLYL GLYCIDYL ETHER COPOLYMERS. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(4):13-23. (In Russ.) https://doi.org/10.21285/2227-2925-2018-8-4-13-23

Views: 415


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)