Identification and diversity analysis of CRISPR-Cas systems in the pathogenic strains of Clostridium botulinum to create eco-friendly phage preparations
https://doi.org/10.21285/achb.982
EDN: NPXLVY
Abstract
The article presents a bioinformatic study of the diversity of CRISPR-Cas systems in the genomes of Clostridium botulinum and the phages they detect, with the aim of their targeted screening. The subject matter of the study was 49 complete chromosomal sequences of bacteria obtained from the GenBank database. Cas genes were identified employing the MacSyFinder tool with the use of HMM profiles from the PFAM and TIGRFAM databases. The identification and analysis of CRISPR cassettes were performed using three independent programs: CRISPRFinder, PILER-CR, and CRISPR Recognition Tool, which ensured high accuracy in determining the cassette structure. Protospacers were identified using the CRISPRTarget tool and the BLASTn algorithm against RefSeq-Viral viral databases. The study involved comparing spacer sequences and phage genomes in order to identify complementary sites. A phage immunity analysis revealed a predominance of Cellulophaga phages (19%), which can be attributed to the environmental characteristics of Clostridium botulinum, as well as a significant proportion of Aeromonas and Bacillus phages (12.5%). Another group of phages (predominantly intestinal) included Enterococcus, Escherichia, and Lactococcus species (6–10%). Also, the protospacers of rare phages (3% each) were found: Acidianus filamentous, Prochlorococcus, Pseudoalteromonas, Stenotrophomonas, and Synechococcus. The obtained results indicate complex CRISPR-Cas systems in Clostridium botulinum, evolving under the impact of different ecological niches.
About the Authors
G. A. TeterinaRussian Federation
Galina A. Teterina, Postgraduate Student
1, Karl Marx St., Irkutsk, 664003
V. P. Salovarova
Russian Federation
Valentina P. Salovarova, Dr. Sci. (Biology), Professor, Head of the Department
1, Karl Marx St., Irkutsk, 664003
Yu. P. Dzhioev
Russian Federation
Yurii P. Dzhioev, Cand. Sci. (Biology), Leading Researcher
1, Krasnogo Vosstaniya St., Irkutsk, 664003
N. A. Arefieva
Russian Federation
Nadezhda A. Arefieva, Postgraduate Student; Clinical Research Assistant; Junior Researcher
1, Karl Marx St., Irkutsk, 664003;
1, Krasnogo Vosstaniya, St., Irkutsk, 664003;
16, Timiryazev St., Irkutsk, 664003
A. Yu. Borisenko
Russian Federation
Andrey Y. Borisenko, Cand. Sci. (Biology), Associate Professor
1, Krasnogo Vosstaniya St., Irkutsk, 664003
Yu. S. Bukin
Russian Federation
Yuri S. Bukin, Cand. Sci. (Biology), Associate Professor; Senior Researcher
1, Karl Marx St., Irkutsk, 664003;
3, Ulanbatorskaya St., Irkutsk, 664033
S. V. Erdyneev
Russian Federation
Sergey V. Erdyneev, Postgraduate Student; Junior Researcher
1, Krasnogo Vosstaniya St., Irkutsk, 664003;
78, Trilisser St., Irkutsk, 664047
L. A. Stepanenko
Russian Federation
Liliya A. Stepanenko, Cand. Sci. (Medicine), Senior Researcher
1, Krasnogo Vosstaniya St., Irkutsk, 664003
D. A. Antipin
Russian Federation
Dmitry A. Antipin, Postgraduate Student
1, Krasnogo Vosstaniya St., Irkutsk, 664003
K. B. Kakhiani
Russian Federation
Kristina B. Kakhiani, Laboratory Assistant
1, Krasnogo Vosstaniya St., Irkutsk, 664003
A. E. Makarova
Russian Federation
Angelina E. Makarova, Laboratory Assistant
1, Krasnogo Vosstaniya St., Irkutsk, 664003
References
1. Hill K.K., Smith T.J. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. In: Rummel A., Binz T. (eds). Botulinum Neurotoxins. Current Topics in Microbiology and Immunology. Berlin: Springer; 2012, vol. 364, р. 1-20. DOI: 10.1007/978-3-642-33570-9_1.
2. Zhang S., Masuyer G., Zhang J., Shen Y., Lundin D., Henriksson L., et al. Identification and characterization of a novel botulinum neurotoxin. Nature Communication. 2017:14130. DOI: 10.1038/ncomms14130.
3. Bowe B.K., Wentz T.G., Gregg B.M., Tepp W.H., Schill K.M., Sharma S., et al. Genomic diversity, competition, and toxin production by group I and II Clostridium botulinum strains used in food challenge studies. Microorganisms. 2022;10(10):1895. DOI: 10.3390/microorganisms10101895.
4. Carter A.T., Peck M.W. Genomes, neurotoxins and biology of Clostridium botulinum group I and group II. Research in Microbiology. 2015;166(4):303-317. DOI: 10.1016/j.resmic.2014.10.010.
5. Brunt J., van Vliet A.H.M., Stringer S.C., Carter A.T., Lindström M., Peck M.W. Pan-genomic analysis of Clostridium botulinum group II (non-proteolytic C. botulinum) associated with foodborne botulism and isolated from the environment. Toxins. 2020;12(5):306. DOI: 10.3390/toxins12050306.
6. Smith T.J., Williamson C.H.D., Hill K.K., Johnson S.L., Xie G., Anniballi F., et al. The distinctive evolution of orfX Clostridium parabotulinum strains and their botulinum neurotoxin type A and F gene clusters is influenced by environmental factors and gene interactions via mobile genetic elements. Frontiers in Microbiology. 2021;12:566908. DOI: 10.3389/fmicb.2021.566908.
7. Nawrocki E.M., Bradshaw M., Johnson E.A. Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Scientific Reports. 2018;8:3100. DOI: 10.1038/s41598-018-21342-9.
8. Yang L., Ning Q., Tang S.-S. Recent advances and next breakthrough in immunotherapy for cancer treatment. Journal of Immunology Research. 2022:8052212. DOI: 10.1155/2022/8052212.
9. Alkhnbashi O.S., Meier T., Mitrofanov A., Backofen R., Vob B. CRISPR-Cas bioinformatics. Methods. 2020;172:3-11. DOI: 10.1016/j.ymeth.2019.07.013.
10. Butiuc-Keul A., Farkas A., Carpa R., Iordache D. CRISPR-Cas system: the powerful modulator of accessory genomes in prokaryotes. Microbial Physiology. 2022;32 (1-2):2-17. DOI: 10.1159/000516643.
11. Tang Y., Gao L., Feng W., Guo C., Yang Q., Li F., et al. The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chemical Society Reviews. 2021;50(21):11844-11869. DOI: 10.1039/D1CS00098E.
12. Koonin E.V., Makarova K.S. Origins and evolution of CRISPR-Cas systems. Philosophic Transactions of the Royal Society B. Biological Sciences. 2019;374(1772):20180087. DOI: 10.1098/rstb.2018.0087.
13. Koonin E.V., Makarova K.S. Mobile genetic elements and evolution of crispr-cas systems: all the way there and back. Genome Biology and Evolution. 2017;9(10):2812-2825. DOI: 10.1093/gbe/evx192.
14. Koonin E.V., Makarova K.S., Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology. 2017;37:67-78. DOI: 10.1016/j.mib.2017.05.008.
15. Bhatia S., Pooja, Yadav S.K. CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. International Journal of Biological Macromolecules. 2023;238:124054. DOI: 10.1016/j.ijbiomac.2023.124054.
16. Chen C., Wang Z., Qin Y. CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Experimental Hematology and Oncology. 2023;12(1):95. DOI: 10.1186/s40164-023-00457-4.
17. Bhokisham N., Laudermilch E., Traeger L.L., Bonilla T.D., Ruiz-Estevez M., Becker J.R. CRISPR-Cas system: the current and emerging translational landscape. Cells. 2023;12(8):1103. DOI: 10.3390/cells12081103.
18. Huang S., Dai R., Zhang Z., Zhang H., Zhang M., Li Z., et al. CRISPR/Cas-based techniques for live-cell imaging and bioanalysis. International Journal of Molecular Sciences. 2023;24(17):13447. DOI: 10.3390/ijms241713447.
19. Van der Oost J., Westra E.R., Jackson R.N., Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews. Microbiology. 2014;12(7):479-492. DOI: 10.1038/nrmicro3279.
20. Behler J., Hess W.R. Approaches to study CRISPR RNA biogenesis and the key players involved. Methods. 2020;172:12-26. DOI: 10.1016/j.ymeth.2019.07.015.
21. Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology. 2015;13:722-736. DOI: 10.1038/nrmicro3569.
22. Pursey E., Dimitriu T., Paganelli F.L., Westra E.R., van Houte S. CRISPR-Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Philosophic Transactions of the Royal Society B. Bioяlogical Sciences. 2022;377:20200464. DOI: 10.1098/rstb.2020.0464.
23. Negahdaripour M., Nezafat N., Hajighahramani N., Rahmatabadi S.S., Ghasemi Y. Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. Infection, Genetics and Evolution. 2017;54:355-373. DOI: 10.1016/j.meegid.2017.06.027.
24. Wentz T.G., Tremblay B.J.M., Bradshaw M., Doxey A.C., Sharma S.K., Sauer J.-D., et al. Endogenous CRISPR-Cas systems in group I Clostridium botulinum and Clostridium sporogenes do not directly target the botulinum neurotoxin gene cluster. Frontiers in Microbiology. 2022;12:787726. DOI: 10.3389/fmicb.2021.787726.
Review
For citations:
Teterina G.A., Salovarova V.P., Dzhioev Yu.P., Arefieva N.A., Borisenko A.Yu., Bukin Yu.S., Erdyneev S.V., Stepanenko L.A., Antipin D.A., Kakhiani K.B., Makarova A.E. Identification and diversity analysis of CRISPR-Cas systems in the pathogenic strains of Clostridium botulinum to create eco-friendly phage preparations. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(2):224-233. (In Russ.) https://doi.org/10.21285/achb.982. EDN: NPXLVY