Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

ОСОБЕННОСТИ НАКОПЛЕНИЯ АНТИОКСИДАНТНЫХ ФЕРМЕНТОВ У КАРТОФЕЛЯ В УСЛОВИЯХ БИОТИЧЕСКОГО И АБИОТИЧЕСКОГО СТРЕССА

https://doi.org/10.21285/2227-2925-2018-8-4-42-54

Полный текст:

Аннотация

Растения регулярно подвергаются воздействию негативных факторов среды, что приводит к экономическим потерям и усиливает возможность угрозы продовольственной безопасности многих стран. Вирусы приводят к ухудшению качественных характеристик семенного материала, а в сочетании с другими стрессовыми факторами снижают урожайность. Особое влияние на растение вирусные инфекции оказывают в сочетании с абиотическими стрессами, которые приводят к генерации активных форм кислорода и развитию «окислительного взрыва»: за счет увеличения уровня активных форм кислорода наблюдается активация выработки антиоксидантных ферментов. Исследования защитных механизмов растений, в том числе картофеля, в условиях стрессов могут быть использованы для их более детального и расширенного понимания, а также для разработки методов повышения устойчивости экономически важных сельскохозяйственных культур. В настоящей работе представлен обзор научных трудов в области биохимии и защиты растений при вирусных инфекциях и солевом стрессе, которые приводят к выработке супероксиддисмутазы, каталазы, пероксидазы и альдегидоксидазы. Изучение механизмов регулирования метаболизма активных форм кислорода у растений в течение воздействия абиотических и биотических стрессовых факторов может служить базой для разработки новых эффективных стратегий борьбы с вирусной инфекцией и абиотическими стрессовыми факторами.

Об авторах

И. В. Киргизова
Омский государственный технический университет
Россия


А. М. Гаджимурадова
РГП на ПХВ Евразийский национальный университет им. Л.Н. Гумилева
Россия


Р. Т. Омаров
РГП на ПХВ Евразийский национальный университет им. Л.Н. Гумилева
Россия


Список литературы

1. Доклад Продовольственной и сельскохозяйственной организации Объединенных Наций «Бесценный дар земли в новом свете». Рим, 2008. 144 с. Statistic // FAOSTAT. Food and Agricultural Organization of the United Nations. URL: http://faos-tat3.fao.org/ download/Q/QC/E (12.10.2017).

2. Национальный доклад о карантинном фитосанитарном состоянии территории Российской Федерации. 2016. [Электронный ресурс]. URL: http://mcx.ru/upload/iblock/cee/ce ec61ca7e 4c50c7af67e00eada64190.pdf (12.10.2017)

3. Национальный доклад о карантинном фитосанитарном состоянии территории Российской Федерации. 2017. [Электронный ресурс]. URL: https://www.google.kz/url?sa=t& source=web &rct=j&url=https://www.fsvps.ru/fsvps-docs/ru/usefulinf/files/nd2017.pdf (28.12.2017).

4. Рогозина Е.В., Мироненко Н.В., Афанасенко О.С., Мацухито Ю. Широко распространенные и потенциально опасные для российского агропроизводства возбудители вирусных болезней картофеля // Вестник защиты растений. 2016. Т. 4. N 90. С. 24-33.

5. Dangl J.L., Jones J.D.G. Plant Pathogens and Integrated Defence Responses to Infection // Nature. 2001. V. 411. No. 6839. P. 826. Doi:10.1038/ 35081161

6. Радюкина Н.Л. Функционирование антиоксидантной системы дикорастущих видов растений при кратковременном действии стрессоров. М., 2015. 200 с.

7. Correa-Aragunde N., Foresi N., Lamattina L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study // Journal of experimental botany. 2015. V. 66. No. 10. P. 2913-2921.

8. Ishikawa T., Uchimiya H., Kawai-Yamada M. The role of plant Bax inhibitor-1 in suppressing H2O2-induced cell death // Methods Enzymol. 2013. V. 527. P. 239-256.

9. Minibayeva F., Beckett R.P., Kranner I. Roles of apoplastic peroxidases in plant response to wounding // Phytochemistry. 2015. V. 112. P. 122-129.

10. Bowler C., Montagu M.V., Inze D. Superoxide dismutase and stress tolerance // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992. V. 43. P. 83-116.

11. Yu Q., Osborne L., Rengel Z. Micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants // Journal of Plant Nutrition. 1998. V. 21. No. 7. P. 1427-1437.

12. Khalid F. Aftab Effect of exogenous application of 24-epibrassinolide on growth, protein contents, and antioxidant enzyme activities of in vitro-grown Solanum tuberosum L. under salt stress // In Vitro Cellular and Developmental Biology - Plant. 2016. V. 52. No. 1. P. 81-91.

13. Foyer C.H, Halliwell B. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism // Planta. 1976. V. 133. P. 21-25.

14. Novo E., Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis // Fibrogenesis and tissue repair. 2008. V. 1. No. 1. P. 5.

15. Khan M.I.R., Massod A., Igbal N., Khan N. Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants // Plant growth regulation. 2016. V. 78. No. 1. P. 1-11.

16. Tang L., Kwon S.Y., Kim S.H., Kim J.S., Choi J.S., Cho K.Y., Sung C.K., Kwak S.S., Lee H.S. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature // Plant Cell Reports. 2006. V. 25. P. 1380-1386.

17. Martinez C.A., Maestri M., Lani E.G. In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance // Plant Science. 1996. V. 116. P. 177-184. Jaspers P., Kangasjärvi J. Reactive oxygen species in abiotic stress signaling // Physiologia Plantarum. 2010. V. 138. No. 4. P. 405-413.

18. Boguszewska D., Grudkowska M., Zagdańska B. Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.) // Potato research. 2010. V. 53. No. 4. P.373-382.

19. McCord J. M., Fridovich I. The reduction of cytochrome c by milk xanthine oxidase // Journal of Biological Chemistry. 1968. V. 243. No. 21. P. 5753-5760.

20. Гарифзянов А.Р., Жуков Н.Н., Иванищев В.В. Образование и физиологические реакции активных форм кислорода в клетках растений // Современные проблемы науки и образования. 2011. N 2. C. 2.

21. McCord J.M., Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein) // Journal of Biological chemistry. 1969. V. 244. No. 22. P. 6049-6055.

22. Gapińska M., Skłodowska M., Gabara B. Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots // Acta Physiologiae Plantarum. 2009. V. 30. No. 1. P. 11.

23. Kukreja S., Nandwal A.S., Kumar N., Sharma S.K., Unvi V., Sharma P.K. Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity // Biologia Plantarum. 2005. V. 49. No. 2. P. 305-308.

24. Dar M.I., Khan F.A., Rehman F. Responses of antioxidative defense system and composition of photosynthetic pigments in Brassica juncea L. upon imidacloprid treatments // Abiotic and Biotic Stress Journal. 2015. V. 1. No. 1. P. 3-15.

25. Sharma P., Dubey R.S. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant // Journal of plant physiology. 2005. V. 162. No. 8. P. 854-864.

26. Mishra S., Jha A.B., Dubey R.S. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings // Protoplasma. 2011. V. 248. No. 3. P. 565-577.

27. Fridovich I. Superoxide dismutases // Adv Enzymol Relat Areas Mol Biol. 1986. V. 58. No. 6. P. 61-97.

28. Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons // Annual review of plant biology. 1999. V. 50. No. 1. P. 601-639.

29. Allen R.D., Webb R.P., Schake S.A. Use of transgenic plants to study antioxidant defenses // Free Radical Biology and Medicine. 1997. V. 23. No. 3. P. 473-479.

30. Kim K.Y., Kwon S.Y., Lee H.S., Hur Y., Bang J.W., Kwak S.S. A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells // Plant molecular biology. 2003. V. 51. No 6. P. 831-838.

31. Tang L., Sung C.K., Kwon S.Y., Lee H.S. Selection of transgenic potato plants expressing both CuZnSОD and APX in chloroplasts with enhanced tolerance to oxidative stress // Journal of Plant Biotechnology. 2004. V. 31. No. 2. P. 109-113.

32. Tang L., Kim S.Y., Kim S.H., Kim J.S., Choi J.S., Cho K.Y., Sung C.K., Kwak S.S., Lee H.S. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature // Plant Cell Reports. 2006. V. 25. No. 12. P. 1380-1386.

33. Rahnama H., Ebrahimzadeh H. The effect of NaCl on antioxidant enzyme activities in potato seedlings // Biologia plantarum. 2009. V. 49. No. 1. P. 93-97.

34. Shafi A., Pal A.K., Sharma V., Kalia S., Kumar S., Ahuja P.S., Singh A.K. Transgenic Potato Plants Overexpressing SOD and APX Exhibit Enhanced Lignification and Starch Biosynthesis with Improved Salt Stress Tolerance // Plant Molecular Biology Reporter. 2017. V. 35. No. 5. P. 504-518.

35. Rahnama H., Ebrahimzadeh H. Antioxidant isozymes activities in potato plants (Solanum tuberosum L.) under salt stress // Journal of Sciences, Islamic Republic of Iran. 2006. V. 17. No. 3. P. 225-230.

36. Sharma P., Jha A.b., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions // Journal of botany. 2012. V. 2012. P. 26. DOI: 10.1155/2012/217037

37. Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants // Redox Homeostasis Managers in Plants under Environmental Stresses. 2016. V. 2. No. 53. P. 1-13 DOI: 10.3389/fenvs.2014.00053

38. Nie Q., Gao G.L., Fan Q.J., Qiao G., Wen X.P., Liu T., Peng Z.J., Cai Y.Q. Isolation and characterization of a catalase gene «HuCAT3» from pitaya (Hylocereus undatus) and its expression under abiotic stress // Gene. 2015. V. 563. Issue 1. P. 63-71 DOI:10.1016/j.gene.2015.03.007

39. Su Y., Guo J., Ling H., Chen S., Wang S., Xu L., Allan C.A., Que Y. Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses // PLoS ONE. 2014. V. 9. No. 1. P. 1-11. DOI:10.1371/journal.po-ne.0084426

40. Mhamdi A., Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models // Journal of Experimental Botany. 2010. V. 61. No. 15. P. 4197-4220 DOI: 10.1093/jxb/erq282 Pinheiro C., Chaves M.M. Photosynthesis and drought: Can we make metabolic connections from available data? // J. Exp. Bot. 2011. V. 62. No. 3. P. 869-882. Sobhanian H., Aghaei K., Komatsu S. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? // J. Proteomics. 2011. No. 74. P. 1323-1337.

41. Bauwe H., Hagemann M., Kern R., Timm S. Photorespiration has a dual origin and manifold links to central metabolism // Curr. Opin. Plant Biol. 2012. No. 15. P. 269-275.

42. Voss I., Suni B., Scheibe R., Raghavendra S. Emerging concept for the role of photorespiration as an important part of abiotic stress response // Plant Biol. 2013. V. 15. P. 713-722. Aghaei K., Ehsanpour A.A., Komatsu S. Potato Responds to Salt Stress by Increased Activity of Antioxidant Enzymes // J. Integr Plant Biol. 2009. V. 51. No. 12. P. 1095-1103. DOI: 10.1111/j.1744-7909.2009.00886.x

43. Kisker C., Schindelin H., Rees D.C. Molybdenum-cofactor-containing enzymes: structure and mechanism // Annual review of biochemistry. 1997. V. 66. No. 1. P. 233-267.

44. Sekimoto H., Seo M., Dohmae N., Takio K., Kamiya Y., Koshiba T. Cloning and molecular characterization of plant aldehyde oxidase // Journal of Biological Chemistry. 1997. V. 272. No. 24. P. 15280-15285.

45. Di D.W., Zhang C., Luo P., An C.W., Guo G.Q. The biosynthesis of auxin: how many paths truly lead to IAA? // Plant growth regulation. 2016. V. 78. No. 3. P. 275-285.

46. Alazem M., Lin N.S. Roles of plant hormones in the regulation of host-virus interactions // Molecular plant pathology. 2015. V. 16. No. 5. P. 529-540.

47. Iqbal N., Umar S., Khan A.N., Khan R.I. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism // Environmental and Experimental Botany. 2014. V. 100. P. 34-42. DOI.org/10.1016/j.envexpbot.2013.12.006

48. Fang Y., Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants // Cellular and molecular life sciences. 2015. V. 72. No. 4. P. 673-689.

49. Gómez-Cadenas A., Vives V., Zandalinas S.I., Manzi M., Sanchez-Perez A.M., Perez-Clemente R.M, Arbona V. Abscisic acid: a versatile phytohormone in plant signaling and beyond // Current Protein and Peptide Science. 2015. V. 16. No. 5. P. 413-434.

50. Yergaliyev T.M., Nurbekova Z., Mukiyanova G., Akbassova A., Sutula M., Zhangazin S., Bari A., Tleukulova Z., Shamekova M., Masalimov Z.K., Omarov R.T. The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection // Plant Physiology and Biochemistry. 2016. V. 109. P. 36-44. DOI: 10.1016/j.plaphy.2016.09.001

51. Cleland W.W., Hengge A.C. Enzymatic mechanisms of phosphate and sulfate transfer // Chem. Rev. 2006. V. 106. No. 8. P. 3252-3278. Новиков Н.Н. Новый метод определения активности пероксидаз в растениях // Известия ТСХА. 2016. N 3, С. 36-46.

52. Ардашева О.А., Федоров А.В., Кочеткова Т.А. Динамика активности пероксидазы в период срастания и в основные фазы развития в растениях Citrullus Lanatus и Cucumis Melo при прививке на разные виды подвоев Cucurbita // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7, N 1, c. 90-95. DOI: 10.21285/2227-2925-2017-7-1-90-95

53. Polevoi V.V., Sinyutina N.F., Salamatova T.S., Inge-Vechtomova N.I., Tankelyun O.V., Sharova E.I., Shishova M.F. Mechanism of auxin action: second messengers // Plant hormone signal perception and transduction. Dordrecht: Kluwer Ac. Publishers. 1996. P. 223-231.

54. Уоринг Ф., Филлипс И. Рост растений и дифференцировка / пер. с англ. Н.Л. Клячко, И.А. смирнова. М.: Мир. 1984. 512 с. Gui F., Chen F., Wu J., Wang Z., Liao X., Hu X. Inactivation and structural change of horseradish peroxidase treated with supercritical carbon dioxide // Food Chemistry. 2006. V. 97. P. 480-489. Bakalovic N., Passardi F., Ioannidis V., Cosio C., Penel C., Falquet L., Dunand C. A Class III Plant Peroxidase // Phytochemistry. 2006. V. 67. No. 6. P. 534-539. DOI: 10.1016/j.phytochem.2005.12.020 Cosio C., Dunand C. Specific functions ofindividual class III peroxidase genes // J. Exp Bot. 2008. V. 60. No. 2. P. 391-408.

55. Mika A., Minibayeva F., Beckett R., Lüthje S. Possiblefunctions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species // Phytochemistry. 2004. V. 3. No. 2. P. 173-193.

56. Kim Y.H., Lim S., Han S.H., Lee J.C., Song W.K., Bang J.W., Kwon S.Y., Lee H.S., Kwak S.S. Differential expression of 10 sweet potato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation // Plant Physiology and Biochemistry. 2007. V. 45. No. 12. P. 908-914.

57. Krishnamurthy P., Ranathunge K., Franke R., Prakash H.S.,Schreiber L., Mathew M.K. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.) // Planta. 2009. V. 230. No. 1. P. 119-134.

58. Lee M.Y. Effect of Na2SO3 on the Activitie s of Antioxidant Enzymes in Geranium Seedlings // Phytochemistry. 2002. V. 59. P. 493-499.

59. Lin K.H., Huang H.C., Lin C.Y. Cloning expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress // Plant Cell Reports. 2010. V. 29. No. 6. P. 575-593.

60. Tao D.L., Oquist G., Wingsle G. Active Oxygen Scavengers during Cold Acclimation of Scots Pine Seedlings in Relation to Freezing Tolerance // Cryobiology. 1998. V. 37. No. 1. P. 38-45.

61. Almagro L., Gómez Ros L.V., Belchi Navarro S., Bru R., Ros Barceló A., Pedreño M. A. Class III peroxidases in plant defence reactions // Journal of Ex-perimental Botany. 2009. V. 60. No. 2. P. 377-390.

62. Kuzaniak E., Sklodowska M. Fungal Pathogen-induced Changes in the Antioxidant Systems of Leaf Peroxisomes from Infected Tomato Plants // Planta. 2005. V. 222. No. 1. P. 192-200.

63. Siedlecka A., Krupa Z. Functions of enzymes in heavy metal treated plants. In: Physiology and biochemistry of metal toxicity and tolerance in plants // Academic Publishers. 2002. P. 303-324.

64. Schützendübel A., Polle A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization // J. Exp Bot. 2002. V. 53. P. 1351-65.

65. Bestsennyi dar zemli v novom svete. Doklad Prodovol'stvennoi i sel'skokhozyaistvennoi organizatsii Ob"edinennykh Natsii [A priceless gift of land in a new light. Report of the Food and Agriculture Organization of the United Nations]. Rome, 2008, 144 p.

66. Statistic. FAOSTAT. Food and Agricultural Organization of the United Nations. Available at: http://faostat3.fao.org/ download/Q/QC/E (accessed 12.10.2017).

67. Natsional'nyi doklad o karantinnom fitosanitar-nom sostoyanii territorii Rossiiskoi Federatsii. 2016. [National report on quarantine phytosanitary status of the territory of the Russian Federation. 2016]. Available at: http://mcx.ru/upload/iblock/cee/ceec61ca 7e4c5 0c7af67e00eada64190.pdf (accessed 12.10.2017)

68. Natsional'nyi doklad o karantinnom fitosanitarnom sostoyanii territorii Rossiiskoi Federatsii. 2017 [National report on quarantine phytosanitary status of the territory of the Russian Federation. 2017]. Available at: https://www. google.kz/url?sa=t&source=web &rct=j&url=https://www.fsvps.ru/fsvps-docs/ru/usefulinf/ files/nd2017.pdf (accessed 28.12.2017)

69. Rogozina E.V., Mironenko N.V., Afanasenko O.S., Matsukhito Yu. The widespread and potentially dangerous for Russian agroproduction causative agents of viral diseases of potatoes. Vestnik zashchity rastenii [Plant Protection Bulletin]. 2016, vol. 4, no. 90, pp. 24-33. (in Russian)

70. Dangl J.L., Jones J.D.G. Plant Pathogens and Integrated Defence Responses to Infection. Nature. 2001, vol. 411, no. 6839, p. 826. Doi:10.1038/35081161

71. Radyukina N.L. Funktsionirovanie antioksidantnoi sistemy dikorastushchikh vidov rastenii pri kratkovremennom deistvii stressorov [The functioning of the antioxidant system of wild plant species under short-term stressors]. Moscow, 2015, 200 p.

72. Correa-Aragunde N., Foresi N., Lamattina L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. Journal of Experimental Botany. 2015, vol. 66, no. 10, pp. 2913-2921.

73. Ishikawa T., Uchimiya H., Kawai-Yamada M. The role of plant Bax inhibitor-1 in suppressing H2O2-induced cell death. Methods Enzymol. 2013, vol. 527, pp. 239-256.

74. Minibayeva F., Beckett R.P., Kranner I. Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry. 2015, vol. 112, pp. 122-129.

75. Bowler C., Montagu M.V., Inze D. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, vol. 43, pp. 83-116.

76. Yu Q., Osborne L., Rengel Z. Micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants. Journal of Plant Nutrition. 1998, vol. 21, no. 7, pp. 1427-1437.

77. Khalid F. Aftab Effect of exogenous application of 24-epibrassinolide on growth, protein contents, and antioxidant enzyme activities of in vitro-grown Solanum tuberosum L. under salt stress. In Vitro Cellular and Developmental Biology - Plant. 2016, vol. 52, no. 1, pp. 81-91.

78. Foyer C.H., Halliwell B. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 1976, vol. 133, pp. 21-25.

79. Novo E., Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fib-rogenesis and Tissue Repair. 2008, vol. 1, no. 1, pp. 5.

80. Khan M.I.R., Massod A., Igbal N., Khan N. Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regulation. 2016, vol. 78, no. 1, pp. 1-11.

81. Tang L., Kwon S.Y., Kim S.H., Kim J.S., Choi J.S., Cho K.Y., Sung C.K., Kwak S.S., Lee H.S. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Reports. 2006, vol. 25, pp. 1380-1386.

82. Martinez C.A., Maestri M., Lani E.G. In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance. Plant Science. 1996, vol.116, pp.177-184.

83. Jaspers P., Kangasjärvi J. Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum. 2010, vol. 138, no. 4, pp. 405-413.

84. Boguszewska D., Grudkowska M., Zagdańska B. Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.). Potato Research. 2010, vol. 53, no. 4, pp. 373-382.

85. McCord J. M., Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. Journal of Biological Chemistry. 1968, vol. 243, no. 21, pp. 5753-5760.

86. Garifzjanov A.R., Zhukov N.N., Ivanishhev V.V Education and physiological reactions of reactive oxygen species in plant cells. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education]. 2011, no. 2, pp. 2. (in Russian)

87. McCord J.M., Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry. 1969, vol. 244, no. 22, pp. 6049-6055.

88. Gapińska M., Skłodowska M., Gabara B. Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiologiae Plantarum. 2009, vol. 30, no. 1, pp. 11.

89. Kukreja S., Nandwal A.S., Kumar N., Sharma S.K., Unvi V., Sharma P.K. Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biologia Plantarum. 2005, vol. 49, no. 2, pp. 305-308.

90. Dar M.I., Khan F.A., Rehman F. Responses of antioxidative defense system and composition of photosynthetic pigments in Brassica juncea L. upon imidacloprid treatments. Abiotic and Biotic Stress Journal. 2015, vol. 1, no. 1, pp. 3-15.

91. Sharma P., Dubey R.S. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. Journal of Plant Physiology. 2005, vol. 162, no. 8, pp. 854-864.

92. Mishra S., Jha A.B., Dubey R.S. Arsenite treat-ment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma. 2011, vol. 248, no. 3, pp. 565-577.

93. Fridovich I. Superoxide dismutases. Adv. Enzymol. Relat. Areas Mol. Biol. 1986, vol. 58, no. 6, pp. 61-97.

94. Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology. 1999, vol. 50, no. 1, pp. 601-639.

95. Allen R.D., Webb R.P., Schake S.A. Use of transgenic plants to study antioxidant defenses. Free Radical Biology and Medicine. 1997, vol. 23, no. 3, pp. 473-479.

96. Kim K.Y., Kwon S.Y., Lee H.S., Hur Y., Bang J.W., Kwak S.S. A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Molecular Biology. 2003, vol. 51, no. 6, pp. 831-838.

97. Tang L., Sung C.K., Kwon S.Y., Lee H.S. Selection of transgenic potato plants expressing both CuZnSОD and APX in chloroplasts with enhanced tolerance to oxidative stress. Journal of Plant Biotechnology. 2004, vol. 31, no. 2, pp. 109-113.

98. Tang L., Kim S.Y., Kim S.H., Kim J.S., Choi J.S., Cho K.Y., Sung C.K., Kwak S.S., Lee H.S. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Reports. 2006, vol. 25, no. 12, pp. 1380-1386.

99. Rahnama H., Ebrahimzadeh H. The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biologia Plantarum. 2009, vol. 49, no. 1, pp. 93-97.

100. Shafi A., Pal A.K., Sharma V., Kalia S., Kumar S., Ahuja P.S., Singh A.K. Transgenic Potato Plants Overexpressing SOD and APX Exhibit Enhanced Lignification and Starch Biosynthesis with Improved Salt Stress Tolerance. Plant Molecular Biology Reporter. 2017, vol. 35, no. 5, pp. 504-518.

101. Rahnama H., Ebrahimzadeh H. Antioxidant isozymes activities in potato plants (Solanum tubero-sum L.) under salt stress. Journal of Sciences, Islamic Republic of Iran. 2006, vol. 17, no. 3, pp. 225-230.

102. Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 2012, vol. 2012, pp. 26. DOI: 10.1155/2012/217037

103. Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Redox Homeostasis Managers in Plants under Environmental Stresses. 2016, vol. 2, no. 53, pp. 1-13 DOI: 10.3389/fenvs.2014.00053

104. Nie Q., Gao G.L., Fan Q.J., Qiao G., Wen X.P., Liu T., Peng Z.J., Cai Y.Q. Isolation and characterization of a catalase gene «HuCAT3» from pitaya (Hylocereus undatus) and its expression under abiotic stress. Gene. 2015, vol. 563, no. 1, pp. 63-71 DOI:10.1016/j.gene.2015.03.007

105. Su Y., Guo J., Ling H., Chen S., Wang S., Xu L., Allan C.A., Que Y. Isolation of a novel peroxisomal ca-talase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS ONE. 2014, vol. 9, no. 1, pp. 1-11. DOI:10.1371/journal.po-ne.0084426

106. Mhamdi A., Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany. 2010, vol. 61, no. 15, pp. 4197-4220 DOI: 10.1093/jxb/erq282

107. Pinheiro C., Chaves M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2011, vol. 62, no. 3, pp. 869-882.

108. Sobhanian H., Aghaei K., Komatsu S. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteomics. 2011, no. 74, pp. 1323-1337.

109. Bauwe H., Hagemann M., Kern R., Timm S. Photorespiration has a dual origin and manifold links to central metabolism. Curr. Opin. Plant Biol. 2012, no. 15, pp. 269-275.

110. Voss I., Suni B., Scheibe R., Raghavendra S. Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol. 2013, vol. 15, pp. 713-722.

111. Aghaei K., Ehsanpour A.A., Komatsu S. Potato Responds to Salt Stress by Increased Activity of Anti-oxidant Enzymes. J. Integr. Plant Biol. 2009, vol. 51, no. 12, pp. 1095-1103. DOI: 10.1111/j.1744-7909.2009. 00886.x

112. Kisker C., Schindelin H., Rees D.C. Molybdenum-cofactor-containing enzymes: structure and mechanism. Annual Review of Biochemistry. 1997, vol. 66, no. 1, pp. 233-267.

113. Sekimoto H., Seo M., Dohmae N., Takio K., Ka-miya Y., Koshiba T. Cloning and molecular characteri-zation of plant aldehyde oxidase. Journal of Biological Chemistry. 1997, vol. 272, no. 24, pp. 15280-15285.

114. Di D.W., Zhang C., Luo P., An C.W., Guo G.Q. The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regulation. 2016, vol. 78, no. 3, pp. 275-285.

115. Alazem M., Lin N.S. Roles of plant hormones in the regulation of host-virus interactions. Molecular Plant Pathology. 2015, vol. 16, no. 5, pp. 529-540.

116. Iqbal N., Umar S., Khan A.N., Khan R.I. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany. 2014, vol. 100, pp. 34-42. DOI.org/10.1016/j.envexpbot.2013.12.006

117. Fang Y., Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Mole-cular Life Sciences. 2015, vol. 72, no. 4, pp. 673-689.

118. Gómez-Cadenas A., Vives V., Zandalinas S.I., Manzi M., Sanchez-Perez A.M., Perez-Clemente R.M, Arbona V. Abscisic acid: a versatile phytohormone in plant signaling and beyond. Current Protein and Peptide Science. 2015, vol. 16, no. 5, pp. 413-434.

119. Yergaliyev T.M., Nurbekova Z., Mukiyanova G., Akbassova A., Sutula M., Zhangazin S., Bari A., Tleukulova Z., Shamekova M., Masalimov Z.K., Omarov R.T. The involvement of ROS producing aldehyde oxidase in plant response to Tombusvirus infection. Plant Physiology and Biochemistry. 2016, vol. 109, pp. 36-44. DOI: 10.1016/j.plaphy.2016.09.001

120. Cleland W.W., Hengge A.C. Enzymatic mechanisms of phosphate and sulfate transfer. Chem. Rev. 2006, vol. 106, no. 8, pp 3252-3278.

121. Novikov N.N. New method for the determination of peroxidase activity in plants. Izvestiya Timiryazevskoi Sel’skokhozyaistvennoi Akademii [Izvestiya of Timiryazev Agricultural Academy]. 2016, no. 3. pp. 36-46. (in Russian)

122. Ardasheva O.A., Fedorov A.V., Kochetkova T.A. Dynamics of peroxidase activity in the period of intergrowth and in the main developmental phases in plants Citrullus Lanatus and Cucumis Melo during inoculation to different types of rootstocks Cucurbita. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology]. 2017, vol. 7, no. 1, pp. 90-95. DOI: 10.21285/2227-2925-2017-7-1-90-95 (in Russian)

123. Waring F., Phillips I. Rost rastenii i different sirovka [Growth of plants and differentiation]. Moscow: Mir Publ., 1984, 512 p.

124. Gui F., Chen F., Wu J., Wang Z., Liao X., Hu X. Inactivation and structural change of horseradish peroxidase treated with supercritical carbon dioxide. Food Chemistry. 2006, vol. 97, pp. 480-489.

125. Bakalovic N., Passardi F., Ioannidis V., Cosio C., Penel C., Falquet L., Dunand C. A Class III Plant Peroxidase. Phytochemistry. 2006, vol. 67, no. 6, pp. 534-539. DOI: 10.1016/j.phytochem.2005.12.020

126. Cosio C., Dunand C. Specific functions ofindividual class III peroxidase genes. J. Exp. Bot. 2008, vol. 60, no. 2, pp. 391-408.

127. Mika A., Minibayeva F., Beckett R., Lüthje S. Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochemistry. 2004, vol. 3, no. 2, pp. 173-193.

128. Kim Y.H., Lim S., Han S.H., Lee J.C., Song W.K., Bang J.W., Kwon S.Y., Lee H.S., Kwak S.S. Differential expression of 10 sweet potato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiology and Biochemistry. 2007, vol. 45, no. 12, pp. 908-914.

129. Krishnamurthy P., Ranathunge K., Franke R., Prakash H.S.,Schreiber L., Mathew M.K. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta. 2009, vol. 230, no. 1, pp. 119-134.

130. Lee M.Y. Effect of Na2SO3 on the Activities of Antioxidant Enzymes in Geranium Seedlings. Phytochemistry. 2002, vol. 59, pp. 493-499.

131. Lin K.H., Huang H.C., Lin C.Y. Cloning expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell. Reports. 2010, vol. 29, no. 6, pp. 575-593.

132. Tao D.L., Oquist G., Wingsle G. Active Oxygen Scavengers during Cold Acclimation of Scots Pine Seedlings in Relation to Freezing Tolerance. Cryobiology. 1998, vol. 37, no. 1, pp. 38-45.

133. Almagro L., Gómez Ros L.V., Belchi Navarro S., Bru R., Ros Barceló A., Pedreño M. A. Class III peroxidases in plant defence reactions. Journal of Experimental Botany. 2009, vol. 60, no. 2, pp. 377-390.

134. Kuzaniak E., Sklodowska M. Fungal Pathogen-induced Changes in the Antioxidant Systems of Leaf Peroxisomes from Infected Tomato Plants. Planta. 2005, vol. 222, no. 1, pp. 192-200.

135. Siedlecka A., Krupa Z. Functions of enzymes in heavy metal treated plants. In: Physiology and biochemistry of metal toxicity and tolerance in plants. Academic Publishers, 2002, pp. 303-324.

136. Schützendübel A., Polle A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, vol. 53, pp.1351-65.


Для цитирования:


Киргизова И.В., Гаджимурадова А.М., Омаров Р.Т. ОСОБЕННОСТИ НАКОПЛЕНИЯ АНТИОКСИДАНТНЫХ ФЕРМЕНТОВ У КАРТОФЕЛЯ В УСЛОВИЯХ БИОТИЧЕСКОГО И АБИОТИЧЕСКОГО СТРЕССА. Известия вузов. Прикладная химия и биотехнология. 2018;8(4):42-54. https://doi.org/10.21285/2227-2925-2018-8-4-42-54

For citation:


Kirgizova I.V., Gajimuradova A.M., Omarov R.Т. ACCUMULATION OF ANTIOXIDANT ENZYMES IN POTATO PLANTS UNDER THE CONDITIONS OF BIOTIC AND ABIOTIC STRESS. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(4):42-54. (In Russ.) https://doi.org/10.21285/2227-2925-2018-8-4-42-54

Просмотров: 52


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)