Синтетические компоненты гидрогелей в тканевой инженерии
https://doi.org/10.21285/achb.987
EDN: CCBZMQ
Аннотация
Целью проведенного исследования являлось осуществление аналитического обзора синтетических компонентов, таких как полиэтиленгликоль и акриловая кислота, для изготовления гидрогелей, выявление их преимуществ и недостатков, а также изучение возможностей применения данных материалов в тканевой инженерии. Гидрогели представляют собой сшитые трехмерные полимерные соединения, которые благодаря наличию гидрофильных частиц способны поглощать большое количество жидкости. Физико-химические свойства гидрогелей настраиваются в зависимости от поставленных задач и определяются составом композиции, концентрацией компонентов, методами и плотностью сшивания, способами изготовления, а также наличием присоединенных веществ. Гидрогели применяются в различных областях, среди которых одно из главных мест занимают биомедицина, биотехнологии и биоинжиниринг. Известно, что компоненты для изготовления гидрогелей делятся на природные, синтетические и полусинтетические. В отличие от гидрогелей из природных компонентов гидрогели из синтетических составляющих обладают таким преимуществом, как высокая воспроизводимость. Синтетические гидрогели способны обеспечить большую гибкость в отношении химического состава и механических свойств, которые могут быть адаптированы для конкретных применений с включением функциональных групп, а их транспортные свойства могут быть изменены путем регулировки длины и плотности полимерных цепей. В настоящее время синтетические полимеры стали важным альтернативным выбором для изготовления гидрогелевых каркасов, поскольку они могут быть молекулярно адаптированы с учетом структуры, молекулярной массы, механической прочности и биоразлагаемости. В данной статье представлена основная информация о гидрогелях, описана их структура, классификация, рассмотрены основные синтетические компоненты для гидрогелевых композиций и способы их применения.
Об авторах
Н. Н. ДреминаРоссия
Дремина Наталья Николаевна, к.б.н., старший научный сотрудник
664003, г. Иркутск, ул. Борцов Революции, 1
И. С. Трухан
Россия
Трухан Ирина Сергеевна, к.б.н., старший научный сотрудник
664003, г. Иркутск, ул. Борцов Революции, 1
И. А. Шурыгина
Россия
Шурыгина Ирина Александровна, д.м.н., профессор РАН, заместитель директора по научной работе
664003, г. Иркутск, ул. Борцов Революции, 1
М. Г. Шурыгин
Россия
Шурыгин Михаил Геннадьевич, д.м.н., заведующий научно-лабораторным отделом
664003, г. Иркутск, ул. Борцов Революции, 1
Список литературы
1. Cao H., Duan L., Zhang Y., Cao J., Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity // Signal Transduction and Targeted Therapy. 2021. Vol. 6. P. 426. DOI: 10.1038/s41392-021-00830-x.
2. Acciaretti F., Vesentini S., Cipolla L. Fabrication strategies towards hydrogels for biomedical application: chemical and mechanical insights // Chemistry – an Asian Journal. 2022. Vol. 17, no. 22. P. e202200797. DOI: 10.1002/asia.202200797.
3. Ho T.-C., Chang C.-C., Chan H.-P., Chung T.-W., Shu C.-W., Chuang K.-P., et al. Hydrogels: properties and applications in biomedicine // Molecules. 2022. Vol. 27, no. 9. P. 2902. DOI: 10.3390/molecules27092902.
4. Yilmaz Y., Gelir A., Salehli F., Nigmatullin R.R., Arbuzov A.A. Dielectric study of neutral and charged hydrogels during the swelling process // Journal of Chemical Physics. 2006. Vol. 125, no. 23. P. 234705. DOI: 10.1063/1.2349480.
5. Chavan Y.R., Tambe S.M., Jain D.D., Khairnar S.V., Amin P.D. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery // Annales Pharmaceutiques Françaises. 2022. Vol. 80, no. 5. P. 603–616. DOI: 10.1016/j.pharma.2021.11.009.
6. Buxton A.N., Zhu J., Marchant R., West J.L., Yoo J.U., Johnstone B. Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells // Tissue Engineering. 2007. Vol. 13, no. 10. P. 2549–2560. DOI: 10.1089/ten.2007.0075.
7. Kasiński A., Zielińska-Pisklak M., Oledzka E., Sobczak M. Smart hydrogels – synthetic stimuli-responsive antitumor drug release systems // International Journal of Nanomedicine. 2020. Vol. 15. P. 4541–4572. DOI: 10.2147/IJN.S248987.
8. Lu X., Perera T.H., Aria A.B., Smith Callahan L.A. Polyethylene glycol in spinal cord injury repair: a critical review // Journal of Experimental Pharmacology. 2018. Vol. 10. P. 37–49. DOI: 10.2147/JEP.S148944.
9. Peppas N.A., Keys K.B., Torres-Lugo M., Lowman A.M. Poly(ethylene glycol)-containing hydrogels in drug delivery // Journal of Controlled Release. 1999. Vol. 62, no. 1–2. P. 81–87. DOI: 10.1016/s0168-3659(99)00027-9.
10. Wang Z., Ye Q., Yu S., Akhavan B. Poly ethylene glycol (PEG)-based hydrogels for drug delivery in cancer therapy: a comprehensive review // Advanced Healthcare Materials. 2023. Vol. 12, no. 18. P. 2300105. DOI: 10.1002/adhm.202300105.
11. Beamish J.A., Zhu J., Kottke-Marchant K., Marchant R.E. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering // Journal of Biomedical Materials Research Part A. 2010. Vol. 92A, no. 2. P. 441–450. DOI: 10.1002/jbm.a.32353.
12. Nguyen K.T., West J.L. Photopolymerizable hydrogels for tissue engineering applications // Biomaterials. 2002. Vol. 23, no. 22. P. 4307–4314. DOI: 10.1016/S0142-9612(02)00175-8.
13. Rydholm A.E., Bowman C.N., Anseth K.S. Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial // Biomaterials. 2005. Vol. 26, no. 22. P. 4495–4506. DOI: 10.1016/j.biomaterials.2004.11.046.
14. Shi J., Yu L., Ding J. PEG-based thermosensitive and biodegradable hydrogels // Acta Biomaterialia. 2021. Vol. 128. P. 42–59. DOI: 10.1016/j.actbio.2021.04.009.
15. Saito G., Swanson J.A., Lee K.-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities // Advanced Drug Delivery Reviews. 2003. Vol. 55, no. 2. P. 199–215. DOI: 10.1016/s0169-409x(02)00179-5.
16. Chen X., Zhang J., Wu K., Wu X., Tang J., Cui S., et al. Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri‐modal bioimaging // Small Methods. 2020. Vol. 4, no. 9. P. 2000310. DOI: 10.1002/smtd.202000310.
17. Jeong Y., Joo M.K., Bahk K.H., Choi Y.Y., Kim H.-T., Kim W.-K., et al. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial // Journal of Controlled Release. 2009. Vol. 137, no. 1. P. 25–30. DOI: 10.1016/j.jconrel.2009.03.008.
18. Nuttelman C.R., Tripodi M.C., Anseth K.S. Synthetic hydrogel niches that promote hMSC viability // Matrix Biology. 2005. Vol. 24, no. 3. P. 208–218. DOI: 10.1016/j.matbio.2005.03.004.
19. Ruoslahti E. The RGD story: a personal account // Matrix Biology. 2003. Vol. 22, no. 6. P. 459–465. DOI: 10.1016/s0945-053x(03)00083-0.
20. Bao Z., Gao M., Fan X., Cui Y., Yang J., Peng X., et al. Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel // International Journal of Biological Macromolecules. 2020. Vol. 155. P. 163–173. DOI: 10.1016/j.ijbiomac.2020.03.210.
21. Zhu J., Tang C., Kottke-Marchant K., Marchant R.E. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides // Bioconjugate Chemistry. 2009. Vol. 20, no. 2. P. 333–339. DOI: 10.1021/bc800441v.
22. Mann B.K., Gobin A.S., Tsai A.T., Schmedlen R.H., West J.L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering // Biomaterials. 2001. Vol. 22, no. 22. P. 3045–3051. DOI: 10.1016/s0142-9612(01)00051-5.
23. Naghdi P., Tiraihi T., Ganji F., Darabi S., Taheri T., Kazemi H. Survival, proliferation and differentiation enhancement of neural stem cells cultured in three-dimensional polyethylene glycol–RGD hydrogel with tenascin // Journal of Tissue Engineering and Regenerative Medicine. 2016. Vol. 10, no. 3. P. 199–208. DOI: 10.1002/term.1958.
24. Cheung C.Y., McCartney S.J., Anseth K.S. Synthesis of polymerizable superoxide dismutase mimetics to reduce reactive oxygen species damage in transplanted biomedical devices // Advanced Functional Materials. 2008. Vol. 18, no. 20. P. 3119–3126. DOI: 10.1002/adfm.200800566.
25. Shi J., Yu L., Ding J. PEG-based thermosensitive and biodegradable hydrogels // Acta Biomaterialia. 2021. Vol. 128. P. 42–59. DOI: 10.1016/j.actbio.2021.04.009.
26. Luan J., Zhang Z., Shen W., Chen Y., Yang X., Chen X., et al. Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation // ACS Applied Materials & Interfaces. 2018. Vol. 10, no. 36. P. 30235–30246. DOI: 10.1021/acsami.8b13548.
27. Yang X., Chen X., Wang Y., Xu G., Yu L., Ding J. Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy // Chemical Engineering Journal. 2020. Vol. 396. P. 125320. DOI: 10.1016/j.cej.2020.125320.
28. Zentner G.M., Rath, R., Shih C., McRea J.C., Seo M.-H., Oh H., et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs // Journal of Controlled Release. 2001. Vol. 72, no. 1–3. P. 203–215. DOI: 10.1016/s0168-3659(01)00276-0.
29. Nayak A.K., Panigrahi P.P. Solubility enhancement of etoricoxib by cosolvency approach // International Scholarly Research Network. 2012. P. 820653. DOI: 10.5402/2012/820653.
30. D’souza A.A., Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications // Expert Opinion on Drug Delivery. 2016. Vol. 13, no. 9. P. 1257–1275. DOI: 10.1080/17425247.2016.1182485.
31. Zhang L., Shen W., Luan J., Yang D., Wei G., Yu L., et al. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel // Acta Biomaterialia. 2015. Vol. 23. P. 271–281. DOI: 10.1016/j.actbio.2015.05.005.
32. Sun J., Liu X., Le Y., Tang M., Dai Z., Yang X., et al. Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery // Journal of Materials Chemistry B. 2017. Vol. 5, no. 31. P. 6400–6411. DOI: 10.1039/C7TB01556A.
33. Choi S., Baudys M., Kim S.W. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats // Pharmaceutical Research. 2004. Vol. 21. P. 827–831. DOI: 10.1023/B:PHAM.0000026435.27086.94.
34. Zhuang Y., Yang X., Li Y., Chen Y., Peng X., Yu L., et al. Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications // ACS Applied Materials & Interfaces. 2019. Vol. 11, no. 33. P. 29604–29618. DOI: 10.1021/acsami.9b10346.
35. Chen Y., Shi J., Zhang Y., Miao J., Zhao Z., Jin X., et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction // Journal of Materials Chemistry B. 2020. Vol. 8, no. 5. P. 980–992. DOI: 10.1039/C9TB02523E.
36. Liu Y., Chen X., Li S., Guo Q., Xie J., Yu L., et al. Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy // ACS Applied Materials & Interfaces. 2017. Vol. 9, no. 28. P. 23428–23440. DOI: 10.1021/acsami.7b05740.
37. Seo B.-B., Koh J.-T., Song S.-C. Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect // Biomaterials. 2017. Vol. 122. P. 91–104. DOI: 10.1016/j.biomaterials.2017.01.016.
38. Zhang Y., Zhang J., Chang F., Xu W., Ding J. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel // Materials Science and Engineering: C. 2018. Vol. 88. P. 79–87. DOI: 10.1016/j.msec.2018.02.028.
39. Курбанбаева А.Э., Холмуминова Д.А., Зарипова Р.Ш. Гидрогели на основе акриловой кислоты и диаминасоединений // Universum: химия и биология. 2023. N 9-2. С. 20–25. DOI: 10.32743/UniChem.2023.111.9.15925. EDN: VEOZNX.
40. Ito T., Yamaguchi S., Soga D., Ueda K., Yoshimoto T., Koyama Y. Water-absorbing bioadhesive poly(acrylic acid)/polyvinylpyrrolidone complex sponge for hemostatic agents // Bioengineering. 2022. Vol. 9, no. 12. P. 755. DOI: 10.3390/bioengineering9120755.
41. Miramini S., Fegan K.L., Green N.C., Espino D.M., Zhang L., Thomas-Seale L.E.J. The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing // Journal of the Mechanical Behavior of Biomedical Materials. 2020. Vol. 103. P. 103544. DOI: 10.1016/j.jmbbm.2019.103544.
42. Roig-Sanchez S., Kam D., Malandain N., Sachyani-Keneth E., Shoseyov O., Magdassi S., et al. One-step double network hydrogels of photocurable monomers and bacterial cellulose fibers // Carbohydrate Polymers. 2022. Vol. 294. P. 119778. DOI: 10.1016/j.carbpol.2022.119778.
43. Alfhaid L., Seddon W.D., Williams N.H., Geoghegan M. Double-network hydrogels improve pH-switchable adhesion // Soft Matter. 2016. Vol. 12, no. 22. P. 5022–5028. DOI: 10.1039/c6sm00656f.
44. Champeau M., Póvoa V., Militão L., Cabrini F.M., Picheth G.F., Meneau F., et al. Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing // Acta Biomaterialia. 2018. Vol. 74. P. 312–325. DOI: 10.1016/j.actbio.2018.05.025.
45. Liu B., Wang Y., Miao Y., Zhang X., Fan Z., Singh G., et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin // Biomaterials. 2018. Vol. 171. P. 83–96. DOI: 10.1016/j.biomaterials.2018.04.023.
46. Jin N.Z., Gopinath S.C. Potential blood clotting factors and anticoagulants // Biomedicine & Pharmacotherapy. 2016. Vol. 84. P. 356–365. DOI: 10.1016/j.biopha.2016.09.057.
47. Ying H., Zhou J., Wang M., Su D., Ma Q., Lv G., et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing // Materials Science and Engineering: C. 2019. Vol. 101. P. 487–498. DOI: 10.1016/j.msec.2019.03.093.
48. Zhang X., Wan H., Lan W., Miao F., Qin M., Wei Y., et al. Fabrication of adhesive hydrogels based on poly (acrylic acid) and modified hyaluronic acid // Journal of the Mechanical Behavior of Biomedical Materials. 2022. Vol. 126. P. 105044. DOI: 10.1016/j.jmbbm.2021.105044.
49. Ito T., Otani N., Fujii K., Mori K., Eriguchi M., Koyama Y. Bioadhesive and biodissolvable hydrogels consisting of water-swellable poly(acrylic acid)/poly(vinylpyrrolidone) complexes // Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2020. Vol. 108, no. 2. P. 503–512. DOI: 10.1002/jbm.b.34407.
50. Wang Y., Wang J., Yuan Z., Han H., Li T., Li L., et al. Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism // Colloids and Surfaces B: Biointerfaces. 2017. Vol. 152. P. 252–259. DOI: 10.1016/j.colsurfb.2017.01.008.
51. Hejčl A., Růžička J., Kekulová K., Svobodová B., Proks V., Macková H., et al. Modified methacrylate hydrogels improve tissue repair after spinal cord injury // International Journal of Molecular Sciences. 2018. Vol. 19, no. 9. P. 2481. DOI: 10.3390/ijms19092481.
52. Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification // Cell. 2006. Vol. 126, no. 4. P. 677–689. DOI: 10.1016/j.cell.2006.06.044.
53. Cameron A.R., Frith J.E., Cooper-White J.J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype // Biomaterials. 2011. Vol. 32, no. 26. P. 5979–5993. DOI: 10.1016/j.biomaterials.2011.04.003.
54. Prouvé E., Drouin B., Chevallier P., Rémy M., Durrieu M.-C., Laroche G. Evaluating poly(acrylamide-co-acrylic acid) hydrogels stress relaxation to direct the osteogenic differentiation of mesenchymal stem cells // Macromolecular Bioscience. 2021. Vol. 21, no. 6. P. 2100069. DOI: 10.1002/mabi.202100069.
55. Khiabani S.S., Aghazadeh M., Rakhtshah J., Davaran S. A review of hydrogel systems based on poly(N-isopropyl acrylamide) for use in the engineering of bone tissues // Colloids and Surfaces B: Biointerfaces. 2021. Vol. 208. P. 112035. DOI: 10.1016/j.colsurfb.2021.112035.
Рецензия
Для цитирования:
Дремина Н.Н., Трухан И.С., Шурыгина И.А., Шурыгин М.Г. Синтетические компоненты гидрогелей в тканевой инженерии. Известия вузов. Прикладная химия и биотехнология. https://doi.org/10.21285/achb.987. EDN: CCBZMQ
For citation:
Dremina N.N., Trukhan I.S., Shurygina I.A., Shurygin M.G. Synthetic components of hydrogels in tissue engineering. Proceedings of Universities. Applied Chemistry and Biotechnology. (In Russ.) https://doi.org/10.21285/achb.987. EDN: CCBZMQ