Synthetic components of hydrogels in tissue engineering
https://doi.org/10.21285/achb.987
EDN: CCBZMQ
Abstract
The study aims to provide an analytical review of synthetic components, such as polyethylene glycol and acrylic acid, used in the production of hydrogels, identify their advantages and disadvantages, and explore the potential applications of these materials in tissue engineering. Hydrogels constitute cross-linked three-dimensional polymers that, due to the presence of hydrophilic particles, are capable of absorbing large amounts of liquid. The physicochemical properties of hydrogels are adjusted depending on the task and are determined by the composition, component concentration, cross-linking methods and density, manufacturing methods, and the presence of additives. Hydrogels are used in various fields, including biomedicine, biotechnology, and bioengineering. It is known that components for the manufacture of hydrogels can be divided into natural, synthetic, and semi-synthetic. Unlike hydrogels prepared from natural components, synthetic hydrogels have the advantage of high reproducibility. Synthetic hydrogels offer greater flexibility in terms of chemical composition and mechanical properties, which can be adapted for specific applications by incorporating functional groups, and their transport properties can be modified by adjusting the length and density of polymer chains. Synthetic polymers have now become an important alternative in the preparation of hydrogel scaffolds, as they can be molecularly adjusted, taking into account the structure, molecular weight, mechanical strength, and biodegradability. The present article provides basic information about hydrogels, describes their structure and classification, and discusses the main synthetic components for hydrogel compositions and ways to use them.
About the Authors
N. N. DreminaRussian Federation
Natalya N. Dremina, Cand. Sci. (Biology), Senior Researcher
6, Bortsov Revolyutsii St., Irkutsk, 664003
I. S. Trukhan
Russian Federation
Irina S. Trukhan, Cand. Sci. (Biology), Senior Researcher
6, Bortsov Revolyutsii St., Irkutsk, 664003
I. A. Shurygina
Russian Federation
Irina A. Shurygina, Dr. Sci. (Medicine), Professor of the Russian Academy of Sciences, Deputy Director for Research
6, Bortsov Revolyutsii St., Irkutsk, 664003
M. G. Shurygin
Russian Federation
Michael G. Shurygin, Dr. Sci. (Medicine), Head of Research and Laboratory Department
6, Bortsov Revolyutsii St., Irkutsk, 664003
References
1. Cao H., Duan L., Zhang Y., Cao J., Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy. 2021;6:426. DOI: 10.1038/s41392-021-00830-x.
2. Acciaretti F., Vesentini S., Cipolla L. Fabrication strategies towards hydrogels for biomedical application: chemical and mechanical insights. Chemistry – an Asian Journal. 2022;17(22):e202200797. DOI: 10.1002/asia.202200797.
3. Ho T.-C., Chang C.-C., Chan H.-P., Chung T.-W., Shu C.-W., Chuang K.-P., et al. Hydrogels: properties and applications in biomedicine. Molecules. 2022;27(9):2902. DOI: 10.3390/molecules27092902.
4. Yilmaz Y., Gelir A., Salehli F., Nigmatullin R.R., Arbuzov A.A. Dielectric study of neutral and charged hydrogels during the swelling process. Journal of Chemical Physics. 2006;125(23):234705. DOI: 10.1063/1.2349480.
5. Chavan Y.R., Tambe S.M., Jain D.D., Khairnar S.V., Amin P.D. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery. Annales Pharmaceutiques Françaises. 2022;80(5):603-616. DOI: 10.1016/j.pharma.2021.11.009.
6. Buxton A.N., Zhu J., Marchant R., West J.L., Yoo J.U., Johnstone B. Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Engineering. 2007;13(10):2549-2560. DOI: 10.1089/ten.2007.0075.
7. Kasiński A., Zielińska-Pisklak M., Oledzka E., Sobczak M. Smart hydrogels – synthetic stimuli-responsive antitumor drug release systems. International Journal of Nanomedicine. 2020;15:4541-4572. DOI: 10.2147/IJN.S248987.
8. Lu X., Perera T.H., Aria A.B., Smith Callahan L.A. Polyethylene glycol in spinal cord injury repair: a critical review. Journal of Experimental Pharmacology. 2018;10:37-49. DOI: 10.2147/JEP.S148944.
9. Peppas N.A., Keys K.B., Torres-Lugo M., Lowman A.M. Poly(ethylene glycol)-containing hydrogels in drug delivery. Journal of Controlled Release. 1999;62(1-2):81-87. DOI: 10.1016/s0168-3659(99)00027-9.
10. Wang Z., Ye Q., Yu S., Akhavan B. Poly ethylene glycol (PEG)-based hydrogels for drug delivery in cancer therapy: a comprehensive review. Advanced Healthcare Materials. 2023;12(18):2300105. DOI: 10.1002/adhm.202300105.
11. Beamish J.A., Zhu J., Kottke-Marchant K., Marchant R.E. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering. Journal of Biomedical Materials Research Part A. 2010;92A(2):441-450. DOI: 10.1002/jbm.a.32353.
12. Nguyen K.T., West J.L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23(22):4307-4314. DOI: 10.1016/S0142-9612(02)00175-8.
13. Rydholm A.E., Bowman C.N., Anseth K.S. Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials. 2005;26(22):4495-4506. DOI: 10.1016/j.biomaterials.2004.11.046.
14. Shi J., Yu L., Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomaterialia. 2021;128:42-59. DOI: 10.1016/j.actbio.2021.04.009.
15. Saito G., Swanson J.A., Lee K.-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Advanced Drug Delivery Reviews. 2003;55(2):199-215. DOI: 10.1016/s0169-409x(02)00179-5.
16. Chen X., Zhang J., Wu K., Wu X., Tang J., Cui S., et al. Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri‐modal bioimaging. Small Methods. 2020;4(9):2000310. DOI: 10.1002/smtd.202000310.
17. Jeong Y., Joo M.K., Bahk K.H., Choi Y.Y., Kim H.-T., Kim W.-K., et al. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. Journal of Controlled Release. 2009;137(1):25-30. DOI: 10.1016/j.jconrel.2009.03.008.
18. Nuttelman C.R., Tripodi M.C., Anseth K.S. Synthetic hydrogel niches that promote hMSC viability. Matrix Biology. 2005;24(3):208-218. DOI: 10.1016/j.matbio.2005.03.004.
19. Ruoslahti E. The RGD story: a personal account. Matrix Biology. 2003;22(6):459-465. DOI: 10.1016/s0945-053x(03)00083-0.
20. Bao Z., Gao M., Fan X., Cui Y., Yang J., Peng X., et al. Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel. International Journal of Biological Macromolecules. 2020;155:163-173. DOI: 10.1016/j.ijbiomac.2020.03.210.
21. Zhu J., Tang C., Kottke-Marchant K., Marchant R.E. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjugate Chemistry. 2009;20(2):333-339. DOI: 10.1021/bc800441v.
22. Mann B.K., Gobin A.S., Tsai A.T., Schmedlen R.H., West J.L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials. 2001;22(22):3045-3051. DOI: 10.1016/s0142-9612(01)00051-5.
23. Naghdi P., Tiraihi T., Ganji F., Darabi S., Taheri T., Kazemi H. Survival, proliferation and differentiation enhancement of neural stem cells cultured in three-dimensional polyethylene glycol–RGD hydrogel with tenascin. Journal of Tissue Engineering and Regenerative Medicine. 2016;10(3):199-208. DOI: 10.1002/term.1958.
24. Cheung C.Y., McCartney S.J., Anseth K.S. Synthesis of polymerizable superoxide dismutase mimetics to reduce reactive oxygen species damage in transplanted biomedical devices. Advanced Functional Materials. 2008;18(20):3119-3126. DOI: 10.1002/adfm.200800566.
25. Shi J., Yu L., Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomaterialia. 2021;128:42-59. DOI: 10.1016/j.actbio.2021.04.009.
26. Luan J., Zhang Z., Shen W., Chen Y., Yang X., Chen X., et al. Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation. ACS Applied Materials & Interfaces. 2018;10(36):30235-30246. DOI: 10.1021/acsami.8b13548.
27. Yang X., Chen X., Wang Y., Xu G., Yu L., Ding J. Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy. Chemical Engineering Journal. 2020;396:125320. DOI: 10.1016/j.cej.2020.125320.
28. Zentner G.M., Rath, R., Shih C., McRea J.C., Seo M.-H., Oh H., et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. Journal of Controlled Release. 2001;72(1-3):203-215. DOI: 10.1016/s0168-3659(01)00276-0.
29. Nayak A.K., Panigrahi P.P. Solubility enhancement of etoricoxib by cosolvency approach. International Scholarly Research Network. 2012:820653. DOI: 10.5402/2012/820653.
30. D’souza A.A., Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery. 2016;13(9):1257-1275. DOI: 10.1080/17425247.2016.1182485.
31. Zhang L., Shen W., Luan J., Yang D., Wei G., Yu L., et al. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomaterialia. 2015;23:271-281. DOI: 10.1016/j.actbio.2015.05.005.
32. Sun J., Liu X., Le Y., Tang M., Dai Z., Yang X., et al. Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery. Journal of Materials Chemistry B. 2017;5(31):6400-6411. DOI: 10.1039/C7TB01556A.
33. Choi S., Baudys M., Kim S.W. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Pharmaceutical Research. 2004:21:827-831. DOI: 10.1023/B:PHAM.0000026435.27086.94.
34. Zhuang Y., Yang X., Li Y., Chen Y., Peng X., Yu L., et al. Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications. ACS Applied Materials & Interfaces. 2019;11(33):29604-29618. DOI: 10.1021/acsami.9b10346.
35. Chen Y., Shi J., Zhang Y., Miao J., Zhao Z., Jin X., et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. Journal of Materials Chemistry B. 2020;8(5):980-992. DOI: 10.1039/C9TB02523E.
36. Liu Y., Chen X., Li S., Guo Q., Xie J., Yu L., et al. Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy. ACS Applied Materials & Interfaces. 2017;9(28):23428-23440. DOI: 10.1021/acsami.7b05740.
37. Seo B.-B., Koh J.-T., Song S.-C. Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Biomaterials. 2017;122:91-104. DOI: 10.1016/j.biomaterials.2017.01.016.
38. Zhang Y., Zhang J., Chang F., Xu W., Ding J. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Materials Science and Engineering: C. 2018;88:79-87. DOI: 10.1016/j.msec.2018.02.028.
39. Kurbanbayeva A., Kholmuminova D., Zaripova R. Hydrogels based on acrylic acid and diamine compounds. Universum: khimiya i biologiya. 2023;9-2:20-25. (In Russian). DOI: 10.32743/UniChem.2023.111.9.15925. EDN: VEOZNX.
40. Ito T., Yamaguchi S., Soga D., Ueda K., Yoshimoto T., Koyama Y. Water-absorbing bioadhesive poly(acrylic acid)/polyvinylpyrrolidone complex sponge for hemostatic agents. Bioengineering. 2022;9(12):755. DOI: 10.3390/bioengineering9120755.
41. Miramini S., Fegan K.L., Green N.C., Espino D.M., Zhang L., Thomas-Seale L.E.J. The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. Journal of the Mechanical Behavior of Biomedical Materials. 2020;103:103544. DOI: 10.1016/j.jmbbm.2019.103544.
42. Roig-Sanchez S., Kam D., Malandain N., Sachyani-Keneth E., Shoseyov O., Magdassi S., et al. One-step double network hydrogels of photocurable monomers and bacterial cellulose fibers. Carbohydrate Polymers. 2022:294:119778. DOI: 10.1016/j.carbpol.2022.119778.
43. Alfhaid L., Seddon W.D., Williams N.H., Geoghegan M. Double-network hydrogels improve pH-switchable adhesion. Soft Matter. 2016;12(22):5022-5028. DOI: 10.1039/c6sm00656f.
44. Champeau M., Póvoa V., Militão L., Cabrini F.M., Picheth G.F., Meneau F., et al. Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing. Acta Biomaterialia. 2018;74:312-325. DOI: 10.1016/j.actbio.2018.05.025.
45. Liu B., Wang Y., Miao Y., Zhang X., Fan Z., Singh G., et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials. 2018;171:83-96. DOI: 10.1016/j.biomaterials.2018.04.023.
46. Jin N.Z., Gopinath S.C. Potential blood clotting factors and anticoagulants. Biomedicine & Pharmacotherapy. 2016;84:356-365. DOI: 10.1016/j.biopha.2016.09.057.
47. Ying H., Zhou J., Wang M., Su D., Ma Q., Lv G., et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Materials Science and Engineering: C. 2019;101:487-498. DOI: 10.1016/j.msec.2019.03.093.
48. Zhang X., Wan H., Lan W., Miao F., Qin M., Wei Y., et al. Fabrication of adhesive hydrogels based on poly (acrylic acid) and modified hyaluronic acid. Journal of the Mechanical Behavior of Biomedical Materials. 2022;126:105044. DOI: 10.1016/j.jmbbm.2021.105044.
49. Ito T., Otani N., Fujii K., Mori K., Eriguchi M., Koyama Y. Bioadhesive and biodissolvable hydrogels consisting of water-swellable poly(acrylic acid)/poly(vinylpyrrolidone) complexes. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2020;108(2):503-512. DOI: 10.1002/jbm.b.34407.
50. Wang Y., Wang J., Yuan Z., Han H., Li T., Li L., et al. Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism. Colloids and Surfaces B: Biointerfaces. 2017;152:252-259. DOI: 10.1016/j.colsurfb.2017.01.008.
51. Hejčl A., Růžička J., Kekulová K., Svobodová B., Proks V., Macková H., et al. Modified methacrylate hydrogels improve tissue repair after spinal cord injury. International Journal of Molecular Sciences. 2018;19(9):2481. DOI: 10.3390/ijms19092481.
52. Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677-689. DOI: 10.1016/j.cell.2006.06.044.
53. Cameron A.R., Frith J.E., Cooper-White J.J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials. 2011;32(26):5979-5993. DOI: 10.1016/j.biomaterials.2011.04.003.
54. Prouvé E., Drouin B., Chevallier P., Rémy M., Durrieu M.-C., Laroche G. Evaluating poly(acrylamide-co-acrylic acid) hydrogels stress relaxation to direct the osteogenic differentiation of mesenchymal stem cells. Macromolecular Bioscience. 2021;21(6):2100069. DOI: 10.1002/mabi.202100069.
55. Khiabani S.S., Aghazadeh M., Rakhtshah J., Davaran S. A review of hydrogel systems based on poly(N-isopropyl acrylamide) for use in the engineering of bone tissues. Colloids and Surfaces B: Biointerfaces. 2021;208:112035. DOI: 10.1016/j.colsurfb.2021.112035.
Review
For citations:
Dremina N.N., Trukhan I.S., Shurygina I.A., Shurygin M.G. Synthetic components of hydrogels in tissue engineering. Proceedings of Universities. Applied Chemistry and Biotechnology. (In Russ.) https://doi.org/10.21285/achb.987. EDN: CCBZMQ