Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Extract from spent oyster mushroom substrate: Composition, and regulatory and protective activity on germinating wheat seeds

https://doi.org/10.21285/achb.991

EDN: UNUPYQ

Abstract

This study examines the biochemical composition of an aqueous extract from the spent mushroom substrate of oyster mushroom (Pleurotus ostreatus strain HK-35) and investigates its regulatory and protective properties. The major organomineral components of the extract included approximately 2% dry matter, comprising over 1.5% organic matter and less than 0.5% ash. The extract had a mildly alkaline pH. Primary organic components included proteins, carbohydrates (predominantly reducing sugars), and humic substances, with potassium, calcium, and phosphorus being the most abundant elements. In germination assays, a 10% extract enhanced wheat seed germination, whereas a 100% extract inhibited it. The 10% extract also enhanced superoxide dismutase activity and the expression of the SOD-1 gene and suppressed peroxidase activity. This treatment had no effect on catalase activity or the transcript levels of the studied CAT and POD genes. In contrast, the 100% extract suppressed peroxidase activity and gene expression; however, it had no effect on superoxide dismutase or catalase activity or their related gene transcripts. In antifungal assays, the 10% extract significantly inhibited the growth of phytopathogens in vitro. The mycelial mass of Aspergillus niger was reduced by more than 6-fold and its colony radius by almost 8-fold, while for Alternaria alternata, mass was reduced by more than 7-fold and colony radius by approximately 15-fold, compared to the control.

About the Authors

S. S. Tarasov
Nizhny Novgorod State Agrotechnological University
Russian Federation

Sergei S. Tarasov, Senior Lecturer

97, Gagarin Ave., Nizhny Novgorod, 603107



E. V. Mikhalev
Nizhny Novgorod State Agrotechnological University
Russian Federation

Evgeny V. Mikhalev, Cand. Sci. (Agriculture), Associate Professor

97, Gagarin Ave., Nizhny Novgorod, 603107



E. K. Krutova
Nizhny Novgorod State Agrotechnological University
Russian Federation

Elena K. Krutova, Cand. Sci. (Biology), Associate Professor, Head of the Department

97, Gagarin Ave., Nizhny Novgorod, 603107



References

1. Ruzzi M., Colla G., Rouphael Y. Editorial: Biostimulants in agriculture II: towards a sustainable future. Frontiers in Plant Science. 2024;15:1427283. DOI: 10.3389/fpls.2024.1427283.

2. Tarasov S.S., Mikhalev E.V., Rechkin A.I., Krutova E.K. Plant growth and development regulators: classification, nature and mechanism of action. Agrokhimiya. 2023;9:65-80. (In Russian). DOI: 10.31857/S0002188123090120. EDN: YUDEAW.

3. Bartucca M.L., Cerri M., Del Buono D., Forni C. Use of biostimulants as a new approach for the improvement of phytoremediation performance – a review. Plants (Basel). 2022;11(15):1946. DOI: 10.3390/plants11151946.

4. Rao J.R., Watabe M., Stewart T.A., Millar B.C., Moore J.E. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands. Waste Management. 2007;27(9):1117-1128. DOI: 10.1016/j.wasman.2006.06.010.

5. Chang K.-L., Chen X.-M., Sun J., Liu J., Sun S., Yang Z., et al. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes. Environmental Technology. 2017;38(13-14):1765-1769. DOI: 10.1080/09593330.2016.1234000.

6. Wan Mahari W.A., Peng W., Nam W.L., Yang H., Lee X.Y., Lee Y.K., et al. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. Journal of Hazardous Materials. 2020;400:123156. DOI: 10.1016/j.jhazmat.2020.123156.

7. Monda H., Cozzolino V., Vinci G., Spaccini R., Piccolo A. Molecular characteristics of water-extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize. Science of the Total Environment. 2017;590-591:40-49. DOI: 10.1016/j.scitotenv.2017.03.026.

8. Chen H., Mao L., Zhao N., Xia C., Liu J., Kubicek C.P., et al. Verification of TRI3 acetylation of trichodermol to trichodermin in the plant endophyte Trichoderma taxi. Frontiers in Microbiology. 2021;12:731425. DOI: 10.3389/fmicb.2021.731425.

9. Tarchevskii I.A. Plant cell signaling systems. Moscow: Nauka; 2002, 293 p. (In Russian).

10. Guo J., Cheng Y. Advances in fungal elicitor-triggered plant immunity. International Journal of Molecular Sciences. 2022;23(19):12003. DOI: 10.3390/ijms231912003.

11. Pršić J., Ongena M. Elicitors of plant immunity triggered by beneficial bacteria. Frontiers in Plant Science. 2020;11:594530. DOI: 10.3389/fpls.2020.594530.

12. Alcalde M.A., Perez-Matas E., Escrich A., Cusido R.M., Palazon J., Bonfill M. Biotic elicitors in adventitious and hairy root cultures: a review from 2010 to 2022. Molecules. 2022;27(16):5253. DOI: 10.3390/molecules27165253.

13. Goncharuk E.A., Saibel O.L., Zaitsev G.P., Zagoskina N.V. The elicitor effect of yeast extract on the accumulation of phenolic compounds in Linum grandiflorum cells cultured in vitro and their antiradical activity. Biology Bulletin. 2022;49:620-628. DOI: 10.1134/S1062359022060061.

14. Morozov A.I. Mushrooms: breeding guide. Donetsk: Stalker; 2000, 304 p. (In Russian).

15. Lowry O.N., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951;193(1):265-275. DOI: 10.1016/S0021-9258(19)52451-6.

16. Sokolov A.V. Agrochemical methods of soil research. Moscow: Nauka; 1975, 656 p. (In Russian).

17. Ermakov A.I. Methods of biochemical research of plants. Leningrad: Kolos; 1972, 456 p. (In Russian).

18. Muzzarelli R.A.A. Colorimetric determination of chitosan. Analytical Biochemistry. 1998;260(2):255-257. DOI: 10.1006/abio.1998.2705.

19. Zhang G.., Xu J, Wang Y., Sun X., Huang S., Huang L., et al. Combined transcriptome and metabolome analyses reveal the mechanisms of ultrasonication improvement of brown rice germination. Ultrasonics Sonochemistry. 2022;91:106239. DOI: 10.1016/j.ultsonch.2022.106239.

20. Polesskaya O.G., Kashirina E.I., Alekhina N.D. Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply. Russian Journal of Plant Physiology. 2004;51:615-620. DOI: 10.1023/B:RUPP.0000040746.66725.77.

21. Kuznetsov V.V., Kuznetsov V.V., Romanov G.A. Molecular genetics and biochemical methods in modern plant biology. Moscow: BINOM. Laboratoriya znanii; 2011, 487 p. (In Russian).

22. Glantz S.A. Primer of biostatistics; 1992, 472 p. (Russ. ed.: Mediko-biologicheskaya statistika. Moscow: Praktika; 1999, 462 p.).

23. Bazhina N.L., Ondar E.E., Deryabina Y.M. Specificity light absorption in visible and ultraviolet regions of humic acids of soils western part of the territory Tuva. Vestnik of the Orenburg State University. 2014;6:189-194. (In Russian). EDN: SNRJJN.

24. Lopez-Moya F., Suarez-Fernandez M., Lopez-Llorca L.V. Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences. 2019;20(2):332. DOI: 10.3390/ijms20020332.

25. Rouached H., Tran L.-S.P. Regulation of plant mineral nutrition: transport, sensing and signaling. International Journal of Molecular Sciences. 2015;16(12):29717-29719. DOI: 10.3390/ijms161226198.

26. Chistyakov I.V., Trofimov S.Ya., Lysak L.V., Stepanov A.A. Changes in the composition and properties of humic acidsunder the influence of microorganisms. Vestnik Moskovskogo universiteta. Seriya 17: Pochvovedenie. 2013;1:54-59. (In Russian). EDN: PYWIBJ.

27. Li R., He J., Xie H., Wang W., Bose S.K., Sun Y., Hu J., et al. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules. 2019;126:91-100. DOI: 10.1016/j.ijbiomac.2018.12.118.

28. Lopez-Moya F., Escudero N., Zavala-Gonzalez E.A., Esteve-Bruna D., Blázquez M.A., Alabadí D., et al. Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports. 2017;7:16813. DOI: 10.1038/s41598-017-16874-5.

29. Mishra B.S., Sharma M., Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum. 2022;174(1):e13546. DOI: 10.1111/ppl.13546.

30. Zhao Y., Yang K., Li Z., Zhao C., Xu J., Hu X., et al. Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar. Ying Yong Sheng Tai Xue Bao. 2015;26(9):2735-2742.

31. To J.P., Reiter W.-D., Gibson S.I. Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars. BMC Plant Biology. 2002;2:4. DOI: 10.1186/1471-2229-2-4.

32. Pereira C., Dias M.I., Petropoulos S.A., Plexida S., Chrysargyris A., Tzortzakis N., et al. The effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.). Molecules. 2019;24(24):4494. DOI: 10.3390/molecules24244494.

33. Guo J., Cheng Y. Advances in fungal elicitor-triggered plant immunity. International Journal of Molecular Sciences. 2022;23(19):12003. DOI: 10.3390/ijms231912003.

34. Abdul Malik N.A., Kumar I.S., Nadarajah K. Elicitor and receptor molecules: orchestrators of plant defense and immunity. International Journal of Molecular Sciences. 2020;21(3):963. DOI: 10.3390/ijms21030963.

35. Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9(8):681. DOI: 10.3390/antiox9080681.

36. Marti L., Savatin D.-V., Gigli-Bisceglia N., de Turris V., Cervone F., De Lorenzo G. The intracellular ROS accumulation in elicitor-induced immunity requires the multiple organelle-targeted Arabidopsis NPK1-related protein kinases. Plant, Cell & Environment. 2021;44(3):931-947. DOI: 10.1111/pce.13978.

37. Fang Y., Gu Y. Regulation of plant immunity by nuclear membrane-associated mechanisms. Frontiers in Immunology. 2021;12:771065. DOI: 10.3389/fimmu.2021.771065.

38. Li Z., Zhang Y., Peng D., Wang X., Peng Y., He X., et al. Corrigendum: polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling. Frontiers in Physiology. 2016;7:52. DOI: 10.3389/fphys.2016.00052.

39. Sakr M.T., El-Sarkassy N.M., Fuller M.P. Exogenously applied antioxidants and biostimulants counteract the adverse effect of biotic stress in wheat plant. Agricultural Research & Technology: Open Access Journal. 2017;12(4):555853. DOI: 10.19080/ARTOAJ.2017.12.555853.

40. Ali A.Y.A., Zhou G., Elsiddig A.M., Zhu G., Meng T., et al. Effects of jasmonic acid in foliar spray and an humic acid amendment to saline soils on forage sorghum plants’ growth and antioxidant defense system. PeerJ. 2022;10:e13793. DOI: 10.7717/peerj.13793.

41. Karamchandani B.M., Maurya P.A., Dalvi S.G., Waghmode S., Sharma D., Rahman P.K.S.M., et al. Synergistic activity of rhamnolipid biosurfactant and nanoparticles synthesized using fungal origin chitosan against phytopathogens. Frontiers in Bioengineering and Biotechnology. 2022;10:917105. DOI: 10.3389/fbioe.2022.917105.

42. Saberi Riseh R., Vatankhah M., Hassanisaadi M., Kennedy J.F. Chitosan/silica: a hybrid formulation to mitigate phytopathogens. International Journal of Biological Macromolecules. 2023;239:124192. DOI: 10.1016/j.ijbiomac.2023.124192.

43. Loffredo E., Berloco M., Senesi N. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicology and Environmental Safety. 2008;69(3):350-357. DOI: 10.1016/j.ecoenv.2007.11.005.

44. Fedoseeva E.V., Tereshina V.M., Danilova O.A., Ianutsevich E.A., Yakimenko O.S., Terekhova V.A. Effect of humic acid on the composition of osmolytes and lipids in a melanin-containing phytopathogenic fungus Alternaria alternate. Environmental Research. 2021;193:110395. DOI: 10.1016/j.envres.2020.110395.

45. Zhang B., Li X., Zhang L., Gu L., Feng F., Li M., et al. Alleviatory effect of spent Pleurotus eryngii Quel substrate on replant problem of Rehmannia glutinosa Libosch. International Journal of Phytoremediation. 2018;20(1):61-67. DOI: 10.1080/15226514.2017.1337064.


Review

For citations:


Tarasov S.S., Mikhalev E.V., Krutova E.K. Extract from spent oyster mushroom substrate: Composition, and regulatory and protective activity on germinating wheat seeds. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(3):357-369. (In Russ.) https://doi.org/10.21285/achb.991. EDN: UNUPYQ

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)