Sorption process for the decaffeination of mate beverage
https://doi.org/10.21285/achb.993
EDN: HUTKRY
Abstract
This study examines a method for decaffeinating mate tea, an infusion made from Ilex paraguariensis leaves. A popular beverage in South America, mate is now available on the Russian market. Reversed-phase high-performance liquid chromatography on a Kromasil 100-5C4 phase was used to analyze the major components of the infusion. The conventional C18 phase was replaced to prevent modification by β-cyclodextrin, as chlorogenic acids in the infusion form host–guest complexes with it, thereby reducing caffeine adsorption on bentonite clay. The targeted adjustment of key mobile phase modifiers controlled the elution position of caffeine relative to monocaffeoylquinic acids. A gradient elution mode enabled the simultaneous detection of caffeine, mono-, and dicaffeoylquinic acids. The use of Na+-form bentonite clay removed over 95% of the caffeine. However, this process incurred substantial losses of approximately 25% of monocaffeoylquinic and 50% of dicaffeoylquinic acids. Since dicaffeoylquinic acids form more stable inclusion complexes with β-cyclodextrin than their monocaffeoyl counterparts, the addition of β-cyclodextrin to the beverage was proposed. Both bentonite clay (an effective enterosorbent) and β-cyclodextrin are approved for food and pharmaceutical use. This approach reduced the losses of both mono- and dicaffeoylquinic acids by more than half.
About the Authors
V. I. DeinekaRussian Federation
Victor I. Deineka, Dr. Sci. (Chemistry), Professor, Professor
85, Pobedy St., Belgorod, 308015
E. Yu. Oleinits
Russian Federation
Elena Yu. Oleinits, Cand. Sci. (Chemistry), Associate Professor
85, Pobedy St., Belgorod, 308015
M. S. Farafonova
Russian Federation
Maria S. Farafonova, Postgraduate Student
85, Pobedy St., Belgorod, 308015
L. A. Deineka
Russian Federation
Lyudmila A. Deineka, Cand. Sci. (Chemistry), Associate Professor
85, Pobedy St., Belgorod, 308015
A. N. Chulkov
Russian Federation
Andrey N. Chulkov, Cand. Sci. (Chemistry), Chief Specialist
8, Shchors St., Belgorod, 308027
References
1. Peres R.G., Tonin F.G., Tavares M.F.M., Rodriguez-Amaya D.B. HPLC-DAD-ESI/MS identification and quantification of phenolic compounds in Ilex paraguariensis beverages and on-line evaluation of individual antioxidant activity. Molecules. 2013;18(4):3859-3871. DOI: 10.3390/molecules18043859.
2. Grujic N., Lepojevic Z., Srdjenovic B., Vladic J., Sudji J. Effects of different extraction methods and conditions on the phenolic composition of mate tea extracts. Molecules. 2012;17(3):2518-2528. DOI: 10.3390/molecules17032518.
3. Kalinin A.Ya. Caffeine: friend or foe? Competency (Russia). 2014;9-10:43-51. (In Russian). EDN: TFNULV.
4. Sivolap Yu.P., Damulin I.V. Caffeine and Alzheimer’s disease. Neurology Bulletin. 2017;49(4):5-10. (In Russian). EDN: ZWTIJL.
5. Abdurakhimov A.Kh., Gofurova Kh.Z.. Caffeine and health. Life Sciences and Agriculture. 2023;1:1-4. (In Russian).
6. Bae J., Park P.S., Chun B.-Y, Choi B.Y., Kim M.K., Shin M.-H., et al. The effect of coffee, tea, and caffeine consumption on serum uric acid and the risk of hyperuricemia in Korean Multi-Rural Communities Cohort. Rheumatology International. 2015;35:327-336. DOI: 10.1007/s00296-014-3061-8.
7. Pietsch A. Decaffeination – process and quality. In: Folmer B. (ed.). The craft and science of coffee. Academic Press; 2017, p. 225-243. DOI: 10.1016/B978-0-12-803520-7.00010-4.
8. Shiono T., Yamamoto K., Yotsumoto Y., Kawai J., Imada N., Hioki J., et al. Selective decaffeination of tea extracts by montmorillonite. Journal of Food Engineering. 2017;200:13-21. DOI: 10.1016/j.jfoodeng.2016.12.015.
9. Do Espirito Santo A.T., Siqueira L.M., Almeida R.N., Vargas R.M.F., do N Franceschini G., Kunde M.A., et al. Decaffeination of yerba mate by supercritical fluid extraction: improvement, mathematical modelling and infusion analysis. The Journal of Supercritical Fluids. 2021;168:105096. DOI: 10.1016/j.supflu.2020.105096.
10. Maffei Facino R., Carini M., Mariani M. Decaffeinated mate extracts and the use thereof. European patent, no. WO1998042209A1; 1998.
11. Duarte M.M., de Cássia Tomasi J., Helm C.V., Amano E., Lazzarotto M., Bueno de Godoy R.C., et al. Caffeinated and decaffeinated mate tea: effect of toasting on bioactive compounds and consumer acceptance. Revista Brasileira de Ciências Agrárias. 2020;15(3):e8513. DOI: 10.5039/agraria.v15i3a8513.
12. Quintero-Jaramillo J.A., Carrero-Mantilla J.I., Sanabria-González N.R. A review of caffeine adsorption studies onto various types of adsorbents. The Scientific World Journal. 2021:9998924. DOI: 10.1155/2021/9998924.
13. Suarez-Quiroz M.L., Campos A.A., Alfaro G.V., Gonzalez-Rios O., Villeneuve P., Figueroa-Espinoza M.C. Isolation of green coffee chlorogenic acids using activated carbon. Journal of Food Composition and Analysis. 2014;33(1):55-58. DOI: 10.1016/j.jfca.2013.10.005.
14. Deineka V.I., Oleinits E.Yu., Deineka L.A. Chromatographic behavior of mono-caffeoylquinic and di-caffeoylquinic acids under the conditions of reversed-phase HPLC: structural dependences. Sorption and Chromatographyprocesses. 2021;21(4):458-465. (In Russian). DOI: 10.17308/sorpchrom.2021.21/3628. EDN: BTSLDP.
15. Andreeva E.Yu., Tang J., Dmitrienko S.G., Zolotov Yu.A. Determination of caffeine, theobromine and theophylline in tea by reversedphase high-performamce liquid chromatography method. Sorption and Chromatographyprocesses. 2010;10(6):805-812. (In Russian). EDN: NCVBLL.
16. Blinova I.P., Oleinits E.Yu., Salasina Ya.Yu., Deineka V.I., Anh V.T.N., Anh N.V. Simultaneous determination of chlorogenic acids and caffeine by reversed-phase HPLC. ChemChemTech. 2023;66(2):45-52. (In Russian). DOI: 10.6060/ivkkt.20236602.6711. EDN: JYRGMN.
17. Deineka V.I., Doronin A.G., Deineka L.A., Oleinits E.Yu. Retention of cyclodextrins under the conditions of reversed-phase chromatography and determining the stability constants of inclusion complexes of antocyanins with β-cyclodextrin. Russian Journal of Physical Chemistry A. 2018;92:2325-2329. DOI: 10.1134/S0036024418110079.
18. Gebara K.S., Gasparotto-Junior A., Santiago P.G., Cardoso C.A.L., de Souza L.M., Morand C., et al. Daily intake of chlorogenic acids from consumption of maté (Ilex paraguariensis A.St.-Hil.) traditional beverages. Journal of Agricultural and Food Chemistry. 2017;65(46):10093-10100. DOI: 10.1021/acs.jafc.7b04093.
19. Butiuk A.P., Martos M.A., Adachic O., Hours R.A. Study of the chlorogenic acid content in yerba mate (Ilex paraguariensis St. Hil.): effect of plant fraction, processing step andharvesting season. Journal of Applied Research on Medicinal and Aromatic Plants. 2016;3(1):27-33. DOI: 10.1016/j.jarmap.2015.12.003.
20. Monteiro M., Farah A., Perrone D., Trugo L.C., Donangelo C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. The Journal of Nutrition. 2007;137(10):2196-2201. DOI: 10.1093/jn/137.10.2196.
21. Oleinits Е.Yu., Deineka V.I., Blinova I.P., Deineka L.A. Selectivity control of dicaffeoylquinic acids separation in reversed-phase HPLC with β-cyclodextrine in a mobile phase. ChemChemTech. 2022;65(7):54-60. DOI: 10.6060/ivkkt.20226507.6599. EDN: YBXVOE.
Review
For citations:
Deineka V.I., Oleinits E.Yu., Farafonova M.S., Deineka L.A., Chulkov A.N. Sorption process for the decaffeination of mate beverage. Proceedings of Universities. Applied Chemistry and Biotechnology. (In Russ.) https://doi.org/10.21285/achb.993. EDN: HUTKRY