Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Culture medium composition influences mycelial growth and metabolite biosynthesis of Daedaleopsis tricolor

https://doi.org/10.21285/achb.996

EDN: BUWBKE

Abstract

The metabolites of the basidiomycete Daedaleopsis tricolor have attracted research attention due to their antioxidant, antimicrobial, and antitumor properties. This study investigated the submerged cultivation of the Daedaleopsis tricolor strain KS11 in nutrient media supplemented with varying nitrogen sources, including yeast extract, soy protein isolate, and a 1:1 combination thereof. The cultivation on the combined medium yielded up to 9 g/L of biomass and reduced the cultivation time by one day compared to media containing a single nitrogen source. The total pool of exometabolites obtained using the combined medium demonstrated high antioxidant (88.61 mg/g) and antiradical activity (3.41 mg/mL). This activity correlated with a high flavonoid content of 18.56 mg/g, which exceeded the levels found in exometabolites from the other media. The use of soy protein isolate as a nitrogen source was more effective for the synthesis of endopigments. These endopigments were identified as melanins by infrared spectrometry. The cultivation of Daedaleopsis tricolor KS11 on a combined medium containing a 1:1 ratio of yeast extract and soy protein isolate represents a promising approach, as it facilitates the concurrent accumulation of exopigments and endopigments with high antioxidant properties. These findings provide a basis for developing dietary supplements with enhanced antioxidant activity.

About the Authors

M. A. Sysoeva
Kazan National Research Technological University
Russian Federation

Maria A. Sysoeva, Dr. Sci. (Chemistry), Professor

68, Karl Marx St., Kazan, 420015



I. Sh. Prozorova
Kazan National Research Technological University
Russian Federation

Ilyuza Sh. Prozorova, Assistant

68, Karl Marx St., Kazan, 420015



E. V. Sysoeva
Kazan National Research Technological University
Russian Federation

Elena V. Sysoeva, Cand. Sci. (Chemistry), Associate Professor

68, Karl Marx St., Kazan, 420015



References

1. Mišković J., Rašeta M., Čapelja E., Krsmanović N., Novaković A., Karaman M. Mushroom species Stereum hirsutum as natural source of phenolics and fatty acids as antioxidants and acetylcholinesterase inhibitors. Chemistry & Biodiversity. 2021;18(11):e2100409. DOI: 10.1002/cbdv.202100409.

2. Karaman M., Čapelja E., Rašeta M., Rakić M. Diversity, chemistry, and environmental contamination of wild growing medicinal mushroom species as sources of biologically active substances (antioxidants, antidiabetics, and ache inhibitors). In: Arya A., Rusevska K. (eds). Biology, Cultivation and Applications of Mushrooms. Singapore: Springer; 2022, p. 203-257. DOI: 10.1007/978-981-16-6257-7_8.

3. Gariboldi M.B., Marras E., Ferrario N., Vivona V., Prini P., Vignati F., et al. Anti-cancer potential of edible/medicinal mushrooms in breast cancer. International Journal of Molecular Sciences. 2023;24(12):10120. DOI: 10.3390/ijms241210120.

4. Bang T.H., Suhara H., Dоі K., Ishikawa H., Fukami K., Parajuli G.P., et al. Wild mushrooms in Nepal: some potential candidates as antioxidant and ACE-inhibition sources. Evidence-Based Complementary and Alternative Medicine. 2014:95305. DOI: 10.1155/2014/195305.

5. Rašeta M., Miškovic J., Čapelja E., Zapora E., Fabijan A.P., Kneževi´c P., et al. Do Ganoderma species represent novel sources of phenolic based antimicrobial agents? Molecules. 2023;28(7):3264. DOI: 10.3390/molecules28073264.

6. Adhikari M., Bhusal S., Pandey M.R., Raut J.K., Bhatt L.R. Mycochemical and nutritional analysis of selected wild mushrooms from Gaurishankar conservation area, Nepal. International Journal of Pharmacognosy and Chinese Medicine. 2019;3(3):000169. DOI: 10.23880/ipcm-16000169.

7. Kurchenko V.P., Sushinskaya N.V., Kiseleva I.S., Ermoshin A.A. Biologically active substances in fruit bodies of wood decomposing fungi. AIP Conference Proceedings. 2022;2390(1):030045. DOI: 10.1063/5.0069253.

8. Stavsky E.A., Teplyakova T.V., Andreeva I.S., Davydova E.S., Stavskaya A.A., Poteshkina A.L. Experimental evaluation of therapeutic properties of ointment based on melanins from natural raw material and a submerged culture of chaga (Inonotus оbliquus). Journal of Siberian Medical Sciences. 2022;6(1):93-105. (In Russian). DOI: 10.31549/2542-1174-2022-6-1-93-105. EDN: GNWRSX.

9. Kanehara R., Tonouchi A., Konno K., Hashimoto M. Cyclohumulanoid sesquiterpenes from the culture broth of the basidiomycetous fungus Daedaleopsis tricolor. Molecules. 2021;26(14):4364. DOI: 10.3390/molecules26144364.

10. Zhao J.-Y., Feng T., Li Z.-H., Dong Z.-J., Zhang H.-B., Liu J.-K. Sesquiterpenoids and an ergosterol from cultures of the fungus Daedaleopsis tricolor. Natural Products and Bioprospecting. 2013;3:271-276. DOI: 10.1007/s13659-013-0065-0.

11. Kim E.-M., Jung H.-R., Min T.-J. Purification, structure determination and biological activities of 20(29)-lupen-3-one from Daedaleopsis tricolor (Bull. ex Fr.) Bond. et Sing. Bulletin of the Korean Chemical Society. 2001;22(1):59-62.

12. Kanehara R., Tonouchi A., Konno K., Koshino H., Hashimoto M. Isolation of cyclohumulanoids from Daedaleopsis tricolor and their biosynthesis based on in silico simulations. Tetrahedron. 2022;123:133006. DOI: 10.1016/j.tet.2022.133006.

13. Ćilerdžić J., Stajić M.M., Milovanović I.N., Galić M.M., Vukojević J.B. Antioxidative potential of Daedaleopsis tricolor basidiocarps and mycelium. Zbornik Matice srpske za prirodne nauke. 2017;132:19-27. DOI: 10.2298/ZMSPN1732019C.

14. Protsenko M.A., Kostina N.E., Teplyakova T.V. Selection of nutrient media for submerged culturing of wood-destroying mushroom of Daedaleopsis tricolor (Bull.) Bondartsev et Singer. Biotehnologia. 2018;34(1):45-51. (In Russian). DOI: 10.21519/0234-2758-2018-34-1-45-51. EDN: YWQNGB.

15. Sysoeva E.V., Prozorova I.S., Sysoeva M.A., Parikova Y.S. Metabolites produced by the Pycnoporellus fulgens KS12 during submerged cultivation. Butlerov Communications. 2024;80(12):175-184. (In Russian). DOI: 10.37952/ROI-jbc-01/24-80-12-175. EDN: DWCTTP.

16. Khabibrakhmanova V.R., Rassabina A.E., Khayrullina A.F., Minibayeva F.V. Physico-chemical characteristics and antioxidant properties of melanins extracted from Leptogium furfuraceum (Harm.). Chemistry of plant raw material. 2022;4:115-125. (In Russian). DOI: 10.14258/jcprm.20220411774. EDN: SOUXVT.

17. Saadaoui N., Mathlouthi A., Zaiter A., El-Bok S., Mokni M., Harbi M., et al. Phytochemical profiling, antioxidant potential and protective effect of leaves extract of tunisian Vitis vinifera autochthonous accessions against acute CCl4-injured hepatotoxicity in mice. Heliyon. 2023;9(5):e16377. DOI: 10.1016/j.heliyon.2023.e16377.

18. Klyushova L.S., Kandalintseva N.V., Grishanova A.Y. Antioxidant activity of new sulphur- and selenium-containing analogues of potassium phenosan against H2O2-induced cytotoxicity in tumour cells. Current Issues in Molecular Biology. 2022;44(7):3131-3145. DOI: 10.3390/cimb44070216.

19. Kannan J., Pang K.-L., Ho Y.-N., Hsu P.-H., Chen L.-L. A comparison of the antioxidant potential and metabolite analysis of marine fungi associated with the red algae Pterocladiella capillacea from Northern Taiwan. Antioxidants. 2024;13(3):336. DOI: 10.3390/antiox13030336.

20. Ribera J., Panzarasa G., Stobbe A., Osypova A., Rupper P., Klose D., Schwarze F.W.M.R. Scalable Biosynthesis of Melanin by the Basidiomycete Armillaria cepistipes. Journal of Agricultural and Food Chemistry. 2019;67(1):132-139. DOI: 10.1021/acs.jafc.8b05071.

21. Mišković J., Karaman M., Rašeta M., Krsmanović N., Berežni S., Jakovljević D., et al. Comparison of two Schizophyllum commune strains in production of acetylcholinesterase inhibitors and antioxidants from submerged cultivation. Journal of Fungi. 2021;7(2):115. DOI: 10.3390/jof7020115.

22. Krupodorova T., Barshteyn V., Dzhagan V., Pluzhnyk A., Zaichenko T., Blume Ya. Enhancement of antioxidant activity and total phenolic content of Fomitopsis pinicola mycelium extract. Fungal Biology and Biotechnology. 2024;11:18. DOI: 10.1186/s40694-024-00187-0.

23. Krupodorova T., Barshteyn V., Gafforov Yu., Raseta M., Zaichenko T., Blume Ya. Comparative evaluation of free radical scavenging activity and total metabolite profiles among 30 macrofungi species. Bioresources and Bioprocessing. 2025;12:13. DOI: 10.1186/s40643-025-00841-4.

24. Chutimanukul P., Sukdee S., Prajuabjinda O., Thepsilvisut O., Panthong S., Athinuwat D., et al. The effects of soybean meal on growth, bioactive compounds, and antioxidant activity of Hericium erinaceus. Horticulturae. 2023;9(6):693. DOI: 10.3390/horticulturae9060693.

25. Prozorova I.Sh., Sysoeva M.A., Sysoeva E.V., Krasilnikov R.O. Antioxidant activity of Daedaleopsis tricolor KS11 culture liquid, its content of flavonoids, simple phenols. In: BIOAsia-Altai 2024: materialy IV Mezhdunar. biotekhnologicheskogo foruma = BIOAsia-Altai 2024: Proc. IV Int. Biotech. Forum. 23–28 September 2024, Barnaul. Barnaul: Altai State University; 2024, p. 169-172. (In Russian).

26. Sadowska-Bartosz I., Bartosz G. Evaluation of the antioxidant capacity of food products: methods, applications and limitations. Processes. 2022;10(10):2031. DOI: 10.3390/pr10102031.

27. Souilem F., Fernandes A., Calhelha R.C., Barreira J.C.M., Barros L., Skhiri F., et al. Wild mushrooms and their mycelia as sources of bioactive compounds: antioxidant, anti-inflammatory and cytotoxic properties. Food Chemistry. 2017;230:40-48. DOI: 10.1016/j.foodchem.2017.03.02.

28. Le T.N., Tran N.T.H., Pham V.N.T., Van-Thi N.-D., Tran H.T.M. Anti-ultraviolet, antibacterial, and biofilm eradication activities against Cutibacterium acnes of melanins and melanin derivatives from Daedaleopsis tricolor and Fomes fomentarius. Frontiers in Microbiology. 2023;14:1305778. DOI: 10.3389/fmicb.2023.1305778.

29. Pralea I.-E. Moldovan R.-C., Petrache A.-M., Ilie-M., Heghe-S.-C., Ielciu I., et al. From extraction to advanced analytical methods: the challenges of melanin analysis. International Journal of Molecular Sciences. 2019;20(16):3943. DOI: 10.3390/ijms20163943.

30. Wang L.-F., Rhim J.-W. Isolation and characterization of melanin from black garlic and sepia ink. LWT – Food Science and Technology. 2019;99:17-23. DOI: 10.1016/j.lwt.2018.09.033.

31. Nguyen H.A.T., Ho T.Ph., Mangelings D., Eeckhaut A.V., Heyden Y.V., Tran H.T.M. Antioxidant, neuroprotective, and neuroblastoma cells (SH-SY5Y) differentiation effects of melanins and arginine-modified melanins from Daedaleopsis tricolor and Fomes fomentarius. BMC Biotechnology. 2024;24:89. DOI: 10.1186/s12896-024-00918-6.

32. Hou R., Liu X., Xiang K., Chen L., Wu X., Lin W., et al. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chemistry. 2019;277:533-542. DOI: 10.1016/j.foodchem.2018.11.002.

33. Ye M., Guo G., Lu Yi., Song Sh., Wang H.-Y., Yang L. Purification, structure and anti-radiation activity of melanin from Lachnum YM404. International Journal of Biological Macromolecules. 2014;63:170-176. DOI: 10.1016/wj.ijbiomac.2013.10.046.


Review

For citations:


Sysoeva M.A., Prozorova I.Sh., Sysoeva E.V. Culture medium composition influences mycelial growth and metabolite biosynthesis of Daedaleopsis tricolor. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(3):385-394. (In Russ.) https://doi.org/10.21285/achb.996. EDN: BUWBKE

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)