On the prospects for applying supercritical fluid technologies in various industries
https://doi.org/10.21285/achb.1001
EDN: DZFYJN
Abstract
The study aims to identify factors contributing to the development of various Russian industries that use supercritical fluid technologies and facilitate their transition from laboratory to industrial scale. The considered technologies are used in the pulp and paper, oil and gas, construction, woodworking, textile, automotive, food, chemical, agricultural, pharmaceutical, and space industries, as well as in medicine and ecology. The specifics of applying supercritical fluid technologies in these sectors are considered. Carbon dioxide is the most commonly used solvent due to its availability and relatively low critical parameters. Supercritical water and other fluids have prospects for industrial use; however, their use on an industrial scale requires thermodynamic conditions. Technological and industrial sovereignty is ensured by the resource capabilities of the oil and gas, food, and agricultural industries. Of strategic importance is the space industry, which requires further research into the application of supercritical fluid technologies. Some sectors of the Russian industry can contribute to sovereignty, provided that equipment is produced for applying promising technologies and expanding the range of various solvents on an industrial scale. It is also necessary to introduce a pilot stage between laboratory research into the application of supercritical fluid technologies and the transition to the industrial stage. For several industries, sovereignty requires a greater quantity of raw materials used in supercritical fluid systems. In conclusion, the identified factors are discussed from the perspective of the large-scale development of specific industries through the considered technologies.
About the Author
M. N. DadashevRussian Federation
Mirali N. Dadashev, Dr. Sci. (Engineering), Professor
65, Leninsky Ave., Moscow, 119991
References
1. Zalepugin D.Yu., Tilkunova N.A., Chernyshova I.V., Polyakov V.S. Development of technologies based on supercritical fluids. Sverkhkriticheskie flyuidy: teoriya i praktika. 2006;1(1):27-51. (In Russian). EDN: KAOIPH.
2. Fedyaeva O.N., Vostrikov A.A. Processing of pulp and paper industry wastes by supercritical water gasification (review). Sverkhkriticheskie flyuidy: teoriya i praktika. 2018;13(3):8-19. (In Russian). EDN: UWGAJU.
3. Gumerov F.M., Zaripov Z.I., Mazanov S.V., Nakipov R.R., Khabriev I.Sh., Akhmetzyanov T.R., et al. Some characteristics of thermodynamic systems and their influence on the efficiency of recovery of valuable components from industrial wastewater of PJSC “Kazanorgsintez” using supercritical fluid extraction method. Sverkhkriticheskie flyuidy: teoriya i praktika. 2022;17(4):3-13. (In Russian). DOI: 10.34984/SCFTP.2022.17.4.001. EDN: HAOPHQ.
4. Polevaya V.G., Vorobey A.M., Parenago O.O., Matson S.M. Chemical modification of poly(1-trimethylsilyl-1-propyne) in supercritical fluid media for the development of high-performance membrane materials. Sverkhkriticheskie flyuidy: teoriya i praktika. 2025;20(1):81-94. (In Russian). DOI: 10.34984/SCFTP.2025.20.1.007. EDN: TWIDFD.
5. Dadashev M.N., Kobelev K.V., Vinokurov V.A., Filenko D.G., Magomedov Z.B., Dzhafarov R.F., et al. Prospects of applying the supercritical fluid technologies in different branches of the industry. Monitoring. Science and Technologies. 2017;1:74-83. (In Russian). EDN: YNCCPX.
6. Dadashev M.N., Filchenko D.G., Grigoriev E.B., Svarovskaya N.A. Influence of formation permeability on oil recovery factor by supercritical carbon dioxide. Monitoring. Science and Technologies. 2024;3:14-18. (In Russian). DOI: 10.25714/MNT.2024.61.002. EDN: PUEKAW.
7. Filenko D.G., Dadashev M.N., Vinokurov V.A., Grigor’ev E.B. Supercritical fluid technology in oil refining and petrochemistry. Nauchno-tekhnicheskii sbornik “Vesti gazovoi naukI”. 2011;2:82-92. (In Russian). EDN: RTWYVB.
8. Soldup Sh.N., Kotel’nikov V.I., Kara-sal B.K. Thermal dissolution of coals of chadan and mezhegey fields with benzene at supercritical conditions. In: Materialy i tekhnologii XXI veka: sbornik trudov konf. = Materials and Technologies of the 21 th century: Proc. Conf. Penza: Privolzhskii Dom znanii; 2016, p. 222-228. (In Russian). EDN: WDQWBZ.
9. Zhang A., Zhang Q., Bai H., Li L., Li J. Polymeric nanoporous materials fabricated with supercritical CO2 and CO2-expanded liquids. Chemical Society Reviews. 2014;43(20):6938-6953. DOI: C4CS00100A.
10. Kang S.M., Unger A., Morrell J.J. The effect of supercritical carbon dioxide extraction on color retention and pesticide reduction of wooden artifacts. Journal of the American Institute for Conservation. 2004;43(2):151-160. DOI: 10.2307/4129650.
11. Bogolitsyn K.G. Prospects in applying supercritical fluid technologies to the chemistry of raw plant material. Sverkhkriticheskie flyuidy: teoriya i praktika. 2007;2(1):16-27. (In Russian). EDN: KAOIUR.
12. Ke J., Su W., Howdle S.M., George M.W., Cook D., Perdjon-Abel M., et al. Electrodeposition of metals from supercritical fluids. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(35):14768-14772. DOI: 10.1073/pnas.0901986106.
13. Soshin S.A., Mazanov S.V., Khairutdinov V.F., Amirkhanov R.D., Gumerova F.M. Supercritical fluid technologies implemented on an industrial scale. Herald of Technological University. 2015;18(4):161-164. (In Russian). EDN: ROGWBX.
14. Kumeeva T.Yu., Prorokova N.P. Supercritical carbon dioxide – “green” solvent for textile chemistry. Textile Industry Technology (series “Proceedings of Higher Educational Institutions”). 2024;4:5-20. (In Russian). DOI: 10.47367/0021-3497_2024_4_5. EDN: FZCWGP.
15. Kiselev M.G., Kumeeva T.Yu., Pukhovskii Yu.P. Application of supercritical carbon dioxide in the textile industry. Rossiiskii khimicheskii zhurnal. 2002;46(1):116-120. (In Russian). EDN: SFXDZP.
16. Smolentsev D.V., Gurin M.V., Venediktov A.A., Evdokimov S.V., Fadeev R.A. Obtaining xenogenic bone chips for implantations using supercritical fluid extraction. Meditsinskaya tekhnika. 2019;4:8-10. (In Russian). EDN: SFXDZP.
17. Golubev E.V., Abramov A.A., Tsygankov P.Yu., Menshutina N.V. Development of combined processes of supercritical drying and sterilization of highly porous materials. Rossiiskii khimicheskii zhurnal. 2024;68(2):93-100. (In Russian). DOI: 10.6060/rcj.2024682.13. EDN: NZRISY.
18. Zheng Y., Huang Yu., Luo J., Peng X., Gui X., Liu G., et al. Supercritical fluid technology: a game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters. 2024;35(7):109169. DOI: 10.1016/j.cclet.2023.109169.
19. Nielsen K.A., Busby D.C., Glancy C.C., Hoy K.L., Kuo A.C., Lee Ch., et al. Spray application of low-VOC coatings using supercritical fluids. SAE Transactions. 1991;100:9-16.
20. Dadashev M.N., Magomedmirzoeva R.G. Black elder a perspective source for obtaining natural food color. In: Prioritetnye nauchnye issledovaniya v oblasti proizvodstva i pererabotki plodoovoshchnogo syr’ya i vinograda: sbornik trudov Mezhdunar. nauch.-prakt. konf. = Priority Scientific Research in the Field of Production and Processing of Fruit and Vegetable Raw Materials and Grapes: Proc. Int. Sci. Pract. Conf. 12–13 September 2023, Makhachkala. Makhachkala: ALEF; 2023, p. 297-303. (In Russian). EDN: RMSFBJ.
21. Braga M.E.M., Gaspar M.C., de Sousa H.C. Supercritical fluid technology for agrifood materials processing. Current Opinion in Food Science. 2023;50:100983. DOI: 10.1016/j.cofs.2022.100983.
22. Wang W., Rao L., Wu X., Wang Y., Zhao L., Liao X. Supercritical carbon dioxide applications in food processing. Food Engineering Reviews. 2021;13:570-591. DOI: 10.1007/s12393-020-09270-9.
23. Menshutina N.V., Kazeev I.V., Artemiev A.I., Bocharova O.A., Khudeev I.I. Application of supercritical extraction for isolation of chemical compounds. ChemChemTech. 2021;64(6):4-19. (In Russian). DOI: 10.6060/ivkkt.20216406.6405. EDN: XRISUD.
24. Gaidukova A.A., Aleksashina S.A. Methods of extracting biologically active substances and their application in the food industry. Scientific Journal of the Far East State Technical Fisheries University. 2025;71(1):15-24. (In Russian). DOI: 10.48612/dalrybvtuz/2025-71-02. EDN: AZGJCI.
25. Albals D., Al-Momani I.F., Issa R., Yehya A. Multi-element determination of essential and toxic metals in green and roasted coffee beans: a comparative study among different origins using ICP-MS. Science Progress. 2021;104(2):1-17. DOI: 10.1177/00368504211026162.
26. Salami A., Asefi N., Kenari R.E., Gharekhani M. Extraction of pumpkin peel extract using supercritical CO2 and subcritical water technology: enhancing oxidative stability of canola oil. Journal of Food Science and Technology. 2021;58:1101-1109. DOI: 10.1007/s13197-020-04624-x.
27. Ahangari H., King J.W., Ehsani A., Yousefi M. Supercritical fluid extraction of seed oils – a short review of current trends. Trends in Food Science & Technology. 2021;111:249-260. DOI: 10.1016/j.tifs.2021.02.066.
28. Garcia-Vaquero M., Rajauria G. Innovative and emerging technologies in the bio-marine food sector. Academic Press; 2021, 500 p. DOI: 10.1016/C2019-0-01113-2.
29. Puha A.L., Stolyar A.L., Williams R.J. The fluid limit of an overloaded processor sharing queue. Mathematics of Operations Research. 2006;31(2):316-350. DOI: 10.1287/moor.1050.0181.
30. Aguiar-Ricardo A., Vasco D.B., Bonifacio T.C., Correia V.G. Supercritical carbon dioxide design strategies: from drug carriers to soft killers. Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 2015;373(2057):1-16. DOI: 10.1098/rsta.2015.0009.
31. Fedotov A.V., Volodina A.A., Grigor’yev V.S., Romanov I.V., Shemberev I.A. Complex energy-efficient utilization technology of solid and liquid organic waste in supercritical conditions. Electrical Technologies and Electrical Equipment in the Agro-industrial Complex. 2019;1:133-139. (In Russian). EDN: QHRZXB.
32. Abdulagatov I.M., Alkhasov A.B., Dogeev G.D., Tumalaev N.R., Aliev R.M., Badavov G.B., et al. Technological application of microalgae in power industry and environmental protection. South of Russia: ecology, development. 2018;13(1):166-183. (In Russian). DOI: 10.18470/1992-1098-2018-1-166-183. EDN: YTMDJN.
33. Munshi P., Bhaduri S. Supercritical CO2: a twentyfirst century solvent for the chemical industry. Current Science. 2009;97(1):63-72.
34. Kravanja K.A., Finšgar M., Knez Z., Knez M.K. Supercritical fluid technologies for the incorporation of synthetic and natural active compounds into materials for drug formulation and delivery. Pharmaceutics. 2022;14(8):1670. DOI: 10.3390/pharmaceutics14081670.
35. Tran P., Park J.-S. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. International Journal of Pharmaceutics. 2021;610:121247. DOI: 10.1016/j.ijpharm.2021.121247.
36. Jambo H., Hubert P., Dispas A. Supercritical fluid chromatography for pharmaceutical quality control: current challenges and perspectives. TrAC Trends in Analytical Chemistry. 2022;146:116486. DOI: 10.1016/j.trac.2021.116486.
37. Islam T., Al Ragib A., Ferdosh S., Uddin A.B.M.H., Akanda J.H., Mia A.R., et al. Development of nanoparticles for pharmaceutical preparations using supercritical techniques. Chemical Engineering Communications. 2022;209(12):1642-1663. DOI: 10.1080/00986445.2021.1983545.
38. Abdelbasset W.K., Elkholi S.M., Ismail K.A., Alalwani T.A.A.M., Hachem K., Mohamed A., et al. Modeling and computational study on prediction of pharmaceutical solubility in supercritical CO2 for manufacture of nanomedicine for enhanced bioavailability. Journal of Molecular Liquids. 2022;359:119306. DOI: 10.1016/j.molliq.2022.119306.
39. Penoy N., Grignard B., Evrard B., Piel G. A supercritical fluid technology for liposome production and comparison with the film hydration method. International Journal of Pharmaceutics. 2021;592:120093. DOI: 10.1016/j.ijpharm.2020.120093.
40. Amani M., Ardestani N.S., Majd N.Y. Utilization of supercritical CO2 gas antisolvent (GAS) for production of Capecitabine nanoparticles as anti-cancer drug: Analysis and optimization of the process conditions. Journal of CO2 Utilization. 2021;46:101465. DOI: 10.1016/j.jcou.2021.101465.
41. Ha E.-S., Kang H.-T., Park H., Kim S., Kim M.-S. Advanced technology using supercritical fluid for particle production in pharmaceutical continuous manufacturing. Journal of Pharmaceutical Investigation. 2023;53:249-267. DOI: 10.1007/s40005-022-00601-y.
42. Chen L., Dean B., Liang X. A technical overview of supercritical fluid chromatography-mass spectrometry (SFC-MS) and its recent applications in pharmaceutical research and development. Drug Discovery Today: Technologies. 2021;40:69-75. DOI: 10.1016/j.ddtec.2021.10.002.
43. Killilea W.R., Hong G.Т., Swallow K.C., Thomason T.B. Supercritical water oxidation: microgravity solids separation. SAE Transactions. 1988. DOI: 10.4271/881038.
44. Hicks M.C., Lauver R.W., Hegde U.G., Hall D.G., Sikora T.J. Gravity effects on premixed and diffusion limited supercritical water oxidation. SAE Transactions. 2005;114:509-517. DOI: 10.4271/2005-01-3036.
45. Fedyaeva O.N., Vostrikov A.A. Destruction of hazardous organic substances in supercritical water. Sverkhkriticheskie flyuidy: teoriya i praktika. 2012;7(1):64-88. (In Russian). EDN: OTNMEH.
46. Zalepugin D.Yu., Karpov V.A., Tilkunova N.A., Kovalchuk Yu.L., Chernyshova I.V., Semenova T.A. Development of polymer waste impregnation method in subcritical freon R22 media with substances promoting their biodegradation in nature. Sverkhkriticheskie flyuidy: teoriya i praktika. 2019;14(2):4-13. (In Russian). DOI: 10.34984/SCFTP.2019.14.2.001. EDN: JZFRNN.
47. Sabirova L.Yu., Yarullin L.Yu., Khabriev I.Sh., Korepanova Ya.Yu., Shinkevich T.O. Energy-saving aspects of the process of extraction of bioactive compounds from plant raw materials with supercritical fluid solvents. Power engineering: research, equipment, technology. 2024;26(6):157-165. (In Russian). DOI: 10.30724/1998-9903-2024-26-6-157-165. EDN: DULTTK.
48. Gurin V., Titenko A., Starokadomsky D., Kutz V., Demchenko L., Maloshtan S., et al. Combined mobile installation of supercritical CO2 extraction. Chronos: natural and technical sciences. 2021;4:16-23. (In Russian).
49. Burgonov O.V., Rubashkin M.V. Improving Russia’s industrial policy. Uchenye zapiski Sankt-Peterburgskogo imeni. V.B. Bobkova filiala Rossiiskoi tamozhennoi akademii. 2023;4:64-68. (In Russian). EDN: DYGRRC.
50. Shinkevich A.I., Shogenov V.A. Some aspects of ensuring the technological sovereignty of a scientific and production enterprise. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2023;25(1):23-27. (In Russian). DOI: 10.37313/1990-5378-2023-25-1-23-27. EDN: XJCKAB.
51. Potaptseva E.V. Evidence-based industrial policy of technological sovereignty: essence and content. Vestnik ekonomiki, prava i sotsiologii. 2025;1:98-103. (In Russian). DOI: 10.24412/1998-5533-2025-1-98-103. EDN: RHOTQJ.
Review
For citations:
Dadashev M.N. On the prospects for applying supercritical fluid technologies in various industries. Proceedings of Universities. Applied Chemistry and Biotechnology. (In Russ.) https://doi.org/10.21285/achb.1001. EDN: DZFYJN


























