Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Microwave pyrolysis of oak wood: Process analysis and product characterization

https://doi.org/10.21285/achb.1003

EDN: BWZUXR

Abstract

Development of methods for converting agricultural waste into valuable chemical products constitutes an important task designed to improve the efficiency of natural resource use. A promising approach is microwave-assisted pyrolysis, which offers high heating rates, selective action, and potential for scaling. In order to implement microwave processing of oak wood, a specialized processing unit was developed; its key element is a microwave reactor with a capacity of up to 3 L. The present study compared the IR spectra of oak wood prior to and after exposure to microwave radiation, as well as that of the obtained gaseous fraction. The IR spectrum analysis of the original wood and the solid residue from pyrolysis revealed structural changes in the polymer components of wood (cellulose, lignin, and hemicelluloses), while the IR spectrum analysis of the gaseous fraction helped identify the main gaseous reaction products. In addition, an elemental analysis of oak wood and the solid product of its microwave processing was conducted. The obtained data indicate a decrease in H/C and O/C atomic ratios by 0.73 and 0.44, respectively, during wood pyrolysis. The estimated calorific value of the solid residue increased twofold, which suggests the potential of using pyrolysis products as fuel due to the increased energy value. The obtained results indicate the potential of microwave pyrolysis in the conversion of agricultural waste into high-carbon materials with increased calorific value.

About the Authors

A. B. Alyeva
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Nizhny Novgorod State Technical University
Russian Federation

Alisa B. Alyeva, Cand. Sci. (Chemistry), Researcher; Associate Professor

46, Ulyanov St., Nizhniy Novgorod, 603950;

24, Minin St., Nizhny Novgorod, 603155



S. A. Ananicheva
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Svetlana A. Ananicheva, Junior Researcher

46, Ulyanov St., Nizhniy Novgorod, 603950



T. O. Krapivnitсkaia
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Tatiana O. Krapivnitckaia, Cand. Sci. (Engineering), Researcher

46, Ulyanov St., Nizhniy Novgorod, 603950



A. N. Denisenko
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Andrey N. Denisenko, Leading Designer

46, Ulyanov St., Nizhniy Novgorod, 603950



A. A. Ananichev
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Andrey A. Ananichev, Junior Researcher

46, Ulyanov St., Nizhniy Novgorod, 603950



E. I. Preobrazhensky
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Evgenii I. Preobrazhensky, Junior Researcher

46, Ulyanov St., Nizhniy Novgorod, 603950



D. A. Shirokov
Nizhny Novgorod State Technical University
Russian Federation

Dmitry A. Shirokov, Assistant

24, Minin St., Nizhny Novgorod, 603155



M. Yu. Glyavin
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Mikhail Yu. Glyavin, Dr. Sci. (Physics & Mathematics), Deputy Director for Research, Head of Department

46, Ulyanov St., Nizhniy Novgorod, 603950



N. Yu. Peskov
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Nikolai Yu. Peskov, Dr. Sci. (Physics & Mathematics), Professor of Russian Academy of Sciences, Head of Laboratory

46, Ulyanov St., Nizhniy Novgorod, 603950



References

1. Moreira G.D.O., Costa G.F., Cavalcante R.M., Young A.F. Process simulation and economic evaluation of pyrolysis and hydrothermal liquefaction as alternatives for the valorization of wood waste from the pulp and paper industry. Energy Conversion and Management. 2025;325:119387. DOI: 10.1016/j.enconman.2024.119387.

2. Marchenko O., Solomin S., Kozlov A., Shamanskiy V., Donskoy I. Economic efficiency assessment of using wood waste in cogeneration plants with multi-stage gasification. Applied Sciences. 2020;10(21):7600. DOI: 10.3390/app10217600.

3. Inari G.N., Pétrissans M., Pétrissans A., Gérardin P. Elemental composition of wood as a potential marker to evaluate heat treatment intensity. Polymer Degradation and Stability. 2009;94(3):365-368. DOI: 10.1016/j.polymdegradstab.2008.12.003.

4. Masfuri I., Amrullah A., Farobie O., Anggoro T., Rian S. F., Prabowo W., et al. Temperature effects on chemical reactions and product yields in the co-pyrolysis of wood sawdust and waste tires: an experimental investigation. Results in Engineering. 2024;23:102638. DOI: 10.1016/j.rineng.2024.102638.

5. Turek-Szytow J., Michalska J., Dudło A., Krzemiński P., Ribeiro A.L., Nowak B., et al. Soil application potential of post-sorbents produced by co-sorption of humic substances and nutrients from sludge anaerobic digestion reject water. Journal of Environmental Management. 2024;370:122465. DOI: 10.1016/j.jenvman.2024.122465.

6. Jadlovec M., Honus S., Čespiva J. Pyrolysis solid product as a sorbent for flue gases mercury capture – Part II: Sorbent utilization. Environmental Technology & Innovation. 2024;35:103678. DOI: 10.1016/j.eti.2024.103678.

7. Xiong J., Zhang J., Du J., He C., Zhang Z., Yang Z., et al. Native corncob-derived biosorbent with grafted 1,3,4-thiadiazole for enhanced adsorption of palladium in metallurgical wastewater. Journal of Colloid and Interface Science. 2025;681:292–304. DOI: 10.1016/j.jcis.2024.11.157.

8. Robinson J.P., Kingman S.W., Barranco R., Snape C.E., Al-Sayegh H. Microwave pyrolysis of wood pellets. Industrial & Engineering Chemistry Research. 2010;49(2):459-463. DOI: 10.1021/ie901336k.

9. Do Nascimento V.R., dos Santos M.B., Diehl L., Paniz J.N.G., de Castilhos F., Bizzi C.A. Microwave-assisted pyrolysis of pine wood waste: system development, biofuels production, and characterization. Journal of Analytical and Applied Pyrolysis. 2024;183:106799. DOI: 10.1016/j.jaap.2024.106799.

10. Undri A., Abou-Zaid M., Briens C., Berruti F., Rosi L., Bartoli M., et al. Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel. 2015;153:464-482. DOI: 10.1016/j.fuel.2015.02.081.

11. Aichholzer A., Schuberth C., Mayer H., Arthaber H. Microwave testing of moist and oven-dry wood to evaluate grain angle, density, moisture content and the dielectric constant of spruce from 8 GHz to 12 GHz. European Journal of Wood and Wood Products. 2018;76:89-103. DOI: 10.1007/s00107-017-1203-x.

12. Salema A.A., Afzal M.T., Bennamoun L. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology. 2017;233:353-362. DOI: 10.1016/j.biortech.2017.02.113.

13. De la Hoz A., Díaz-Ortiz Á., Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews. 2005;34(2):164-178. DOI: 10.1039/B411438H.

14. Zhang X., Hayward D.O., Mingos D.M.P. Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chemical Communications. 1999;11:975-976. DOI: 10.1039/a901245a.

15. Ramirez A., Hueso J.L., Mallada R., Santamaria J. In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction. Chemical Engineering Journal. 2017;316:50-60. DOI: 10.1016/j.cej.2017.01.077.

16. Habouria M., Ouertani S., Mansour N.B., Azzouz S., Elaieb M.T. Influence of microwave power and heating time on the drying kinetics and mechanical properties of Eucalyptus gomphocephala wood. Frontiers in Heat and Mass Transfer. 2025;23(1):345-360. DOI: 10.32604/fhmt.2024.057387.

17. Xing X., Li S., Jin J., Wang Z., Fu F. Effects of high-intensity microwave (HIMW) treatment on mechanical properties and bending failure mechanisms of radiata pine (Pinus Radiata D. Don). Wood Science and Technology. 2024;58:2073-2096. DOI: 10.1007/s00226-024-01601-x.

18. Colom X., Carrillo F. Comparative study of wood samples of the northern area of catalonia by FTIR. Journal of Wood Chemistry and Technology. 2005;25(1-2):1-11. DOI: 10.1081/WCT-200058231.

19. Pandey K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science. 1999;71(12):1969-1975. DOI: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D.

20. Pozhidaev V.M., Retivov V.M., Panarina E.I., Sergeeva Y.E., Zhdanovich O.A., Yatsishina E.B. Development of a method for identifying wood species in archaeological materials by IR spectroscopy. Zhurnal analiticheskoi khimii. 2019;74(12):911-921. (In Russian). DOI: 10.1134/s0044450219120107. EDN: GBSFCS.


Review

For citations:


Alyeva A.B., Ananicheva S.A., Krapivnitсkaia T.O., Denisenko A.N., Ananichev A.A., Preobrazhensky E.I., Shirokov D.A., Glyavin M.Yu., Peskov N.Yu. Microwave pyrolysis of oak wood: Process analysis and product characterization. Proceedings of Universities. Applied Chemistry and Biotechnology. (In Russ.) https://doi.org/10.21285/achb.1003. EDN: BWZUXR

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)