Protective activities of some bioactive components from Salvia officinalis extracts and essential oil in acetaminophen-induced model of acute liver and kidney injury in mice
https://doi.org/10.21285/achb.1002
EDN: UTMCYY
Abstract
Drugs and toxic compounds-induced liver and kidney injuries are mostly responsible for hepatic and renal dysfunction. Many treatments have recently been proposed for these injuries, like chemicals and traditional medicines. Thus, looking for new classes of natural and safe compounds is a global demand. The genus Salvia from the Lamiaceae family are well-studied and vastly used in traditional medicine. The plant contains a variety of secondary metabolites, like terpenoids, which have shown many pharmacological activities. Based on the various reported pharmacological effectiveness of Salvia officinalis L. (sage, I), the protective effects of some extracts and essential oil of this plant by the number of polar and nonpolar organic as well as aqueous solvents on the liver and kidney injury in acetaminophen-induced mice investigated in this research. The results showed that chloroformic and carbon tetrachloride extracts of Salvia officinalis had the best effects for protecting against kidney injury, while for liver, chloroformic, ethanolic, and hydroethanolic extracts also had such effects. It can be concluded that extraction of Salvia officinalis with polar and nonpolar organic and aqueous solvents could separate various bioactive components which appropriately and remarkably improve some serum markers following acetaminophen-induced liver and kidney damage in mice.
Keywords
About the Authors
S. A. SobhanianIslamic Republic of Iran
Seyed Ali Sobhanian, Dr. Sci. (Pharmacy), Associate Professor, Department of Medicinal Chemistry
Zargandeh, Dr. Shariati St., Tehran, 1949635881, Iran
A. Ahmadi
Islamic Republic of Iran
Abbas Ahmadi, Dr. Sci. (Chemistry), Professor, Department of Chemistry
Amir al-Momenin Complex, Esteghlal Blvd., Karaj, 3149968111, Iran
M. Roghani
Islamic Republic of Iran
Mehrdad Roghani, Dr. Sci. (Physiology), Professor
1471, North Kargar Ave., Tehran, 3319118651, Iran
P. Hassanlo
Islamic Republic of Iran
Parinaz Hassanlo, M. Sc., Assistant, Department of Chemistry
Amir al-Momenin Complex, Esteghlal Blvd., Karaj, 3149968111, Iran
Sh. Khamoushi
Islamic Republic of Iran
Shima Khamoushi, M. Sc., Assistant, Department of Chemistry
Amir al-Momenin Complex, Esteghlal Blvd., Karaj, 3149968111, Iran
References
1. Qin J., Ma Y., Wang C., Li H., Zou Z., Zhang Y., et al. Effects of carnosine combined with Lactobacillus on the antioxidant capacity of liver and kidney in normal or stressed mice. Food Bioscience. 2024;59:103904. DOI: 10.1016/j.fbio.2024.103904.
2. Zheng X., Li S., Wang K., Wang Z., Li J., Yang Q., et al. Comparing the pharmacological effects of the prepared folium of Epimedium brevicornu Maxim. and Epimedium sagittatum Maxim. on kidney-Yang deficiency syndrome and liver injury complications. Fitoterapia. 2024;176:106006. DOI: 10.1016/j.fitote.2024.106006.
3. Li D.-D., Li W.-J., Kong S.-Z., Li S.-D., Guo J.-Q., Guo M.-H., et al. Protective effects of collagen polypeptide from tilapia skin against injuries to the liver and kidneys of mice induced by D-galactose. Biomedicine & Pharmacotherapy. 2019;117:109204. DOI: 10.1016/j.biopha.2019.109204.
4. Jaffri J.M., Mohamed S., Ahmad I.N., Mustapha N.M., Manap Y.A., Rohimi N. Effects of catechin-rich oil palm leaf extract on normal and hypertensive rats’ kidney and liver. Food Chemistry. 2011;128(2):433-441. DOI: 10.1016/j.foodchem.2011.03.050.
5. Lafhal K., Sabir E., Elkhiat A., Hammoud M., Makbal R., Ezoubeiri A., et al. Rosa damascena Mill attenuated the liver and kidneys injuries in copper-overloaded mice. Molecular Genetics and Metabolism. 2021;132(2):S61. DOI: 10.1016/j.ymgme.2020.12.137.
6. Ghorbani A., Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine. 2017;7(4):433-440. DOI: 10.1016/j.jtcme.2016.12.014.
7. Walker J.B., Sytsma K.J., Treutlein J., Wink M. Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. American Journal of Botany. 2004;91(7):1115-1125. DOI: 10.3732/ajb.91.7.1115.
8. Rasmy N.M., Hassan A.A., Foda M.I., El-Moghazy M.M. Assessment of the antioxidant activity of sage (Salvia officinalis L.) extracts on the shelf life of mayonnaise. World Journal of Dairy & Food Sciences. 2012;7(1):28-40.
9. Fawzi M., Kadhem Z., Farhan S. Anti-inflammatory effect of sage (Salvia officinalis) extracts on oral health. Iraqi Dental Journal. 2017;39(1):1-6. DOI: 10.26477/idj.v39i1.111.
10. Monsefi M., Abedian M., Azarbahram Z., Ashraf M.J. Salvia officinalis induces alveolar bud growing in adult female rat mammary glands. Avicenna Journal of Phytomedicine. 2015;5(6):560-567. DOI: 10.22038/ajp.2015.4638.
11. Akhondzadeh S., Noroozian M., Mohammadi M., Ohadinia S., Jamshidi A.H., Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double-blind, randomized and placebo-controlled trial. Journal of Clinical Pharmacy and Therapeutics. 2003;28:53-59. DOI: 10.1046/j.1365-2710.2003.00463.x.
12. Stanojević D., Čomić L., Stefanovic O., Solujić-Sukdolak S. In vitro synergistic antibacterial activity of Salvia officinalis L. and some preservatives. Archives of Biological Sciences. 2010;62(1):175-183. DOI: 10.2298/ABS1001167S.
13. Jedinák A., Mučková M., Košt’álová D., Maliar T., Mašterová I. Antiprotease and antimetastatic activity of ursolic acid isolated from Salvia officinalis. Zeitschrift für Naturforschung C. 2014;61(11-12):777-782. DOI: 10.1515/znc-2006-11-1203.
14. Jedidi S., Rtibi K., Selmi S., Aloui F., Selmi H., Wannes D., et al. Phytochemical/antioxidant properties and individual/synergistic actions of Salvia officinalis L. aqueous extract and loperamide on gastrointestinal altering motor function. Journal of Medicinal Food. 2019;22(12):1235-1245. DOI: 10.1089/jmf.2019.0051.
15. Jedidi S., Aloui F., Rtibi K., Sammari H., Selmi H., Rejeb A., et al. Individual and synergistic protective properties of Salvia officinalis decoction extract and sulfasalazine against ethanol-induced gastric and small bowel injuries. RSC Advances. 2020;10(59):35998-36013. DOI: 10.1039/D0RA03265D.
16. Koubaa-Ghorbel F., Chaâbane M., Turki M., Makni-Ayadi F., El Feki A. The protective effects of Salvia officinalis essential oil compared to simvastatin against hyperlipidemia, liver, and kidney injuries in mice submitted to a high-fat diet. Journal of Food Biochemistry. 2020;44(4):e13160. DOI: 10.1111/jfbc.13160.
17. Amraoui W., Adjabi N., Bououza F., Boumendjel M., Taibi F., Boumendjel A., et al. Modulatory role of selenium and vitamin E, natural antioxidants, against bisphenol A-induced oxidative stress in Wistar albinos rats. Toxicological Research. 2018;34:231-239. DOI: 10.5487/tr.2018.34.3.231.
18. Chandorkar N., Tambe S., Amin P., Madankar C. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomedicine Plus. 2021;1(4):100089. DOI: 10.1016/j.phyplu.2021.100089.
19. Zámboriné Németh É., Nguyen H.T. Thujone, a widely debated volatile compound: what do we know about it? Phytochemistry Reviews. 2020;19:405-423. DOI: 10.1007/s11101-020-09671-y.
20. Chebbac K., Moussaoui A.E.L, Bourhia M., Salamatullah A.M., Alzahrani A., Guemmouh R. Chemical analysis and antioxidant and antimicrobial activity of essential oils from Artemisia negrei L. against drug-resistant microbes. Evidence-Based Complementary and Alternative Medicine. 2021:5902851. DOI: 10.1155/2021/5902851.
21. Dew S.E., Wardlaw S.A., Ong D.E. Effects of pharmacological retinoids on several vitamin A-metabolizing enzymes. Cancer Research. 1993;53(13):2965-2969.
22. Trevizan L.N.F., do Nascimento K.F., Santos J.A., Liete Kassuya C.A, Lima Cardoso C.A., do Carmo Vieira M., et al. Anti-inflammatory, antioxidant, and anti-Mycobacterium tuberculosis activity of viridiflorol: the major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. Journal of Ethnopharmacology. 2016;192:510-515. DOI: 10.1016/j.jep.2016.08.053.
23. Du Q., Xin H., Peng C. Pharmacology and phytochemistry of the Nitraria genus (review). Molecular Medicine Reports. 2015;11(1):11-20. DOI: 10.3892/mmr.2014.2677.
24. Jeong J.B., Hong S.C., Jeong H.J., Koo J.S. Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Archives of Pharmacal Research. 2011;34:2109-2116. DOI: 10.1007/s12272-011-1214-9.
25. Verma A., Joshi S., Singh D. Imidazole: having versatile biological activities. Journal of Chemistry. 2013;2013:329412. DOI: 10.1155/2013/329412.
26. Morovvati H., Armand N. Investigate the effect of alcoholic extract of bulbs of narcissus (Narcissus tazetta L.) on indexes of renal function. Feyz, Journal of Kashan University of Medical Sciences. 2020;24(1):56-62. (In Arabic).
27. Hou G., Surhio M.M., Ye H., Gao X., Ye Z., Li J., et al. Protective effects of a Lachnum polysaccharide against liver and kidney injury induced by lead exposure in mice. International Journal of Biological Macromolecules. 2019;124:716-723. DOI: 10.1016/j.ijbiomac.2018.11.133.
28. Mohamadi Yarijani Z., Najafi H. Kidney injury in COVID-19 patients, drug development and their renal complications: review study. Biomedicine & Pharmacotherapy. 2021;142:111966. DOI: 10.1016/j.biopha.2021.111966.
29. Sheng M.-Y., Peng D.-W., Peng H.-M., Zhang Y.-L., Xiao L., Zhang M.-R., et al. Effective substances and molecular mechanisms guided by network pharmacology: an example study of Scrophulariae Radix treatment of hyperthyroidism and thyroid hormone-induced liver and kidney injuries. Journal of Ethnopharmacology. 2024;326:117965. DOI: 10.1016/j.jep.2024.117965.
30. Hao R., Ge J., Ren Y., Song X., Jiang Y., Sun-Waterhouse D., et al. Caffeic acid phenethyl ester mitigates cadmium-induced hepatotoxicity in mice: Role of miR-182-5p/TLR4 axis. Ecotoxicology and Environmental Safety. 2021;207:111578. DOI: 10.1016/j.ecoenv.2020.111578.
31. Aithal G.P., Watkins P.B., Andrade R.J., Larrey D., Molokhia M., Takikawa H., et al. Case definition and phenotype standardization in drug-induced liver injury. Clinical Pharmacology & Therapeutics. 2011;89(6):806-815. DOI: 10.1038/clpt.2011.58.
32. Saito C., Zwingmann C., Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology. 2010;51(1):246-254. DOI: 10.1002/hep.23267.
33. He X., Peng X., Zhang S., Yang T., Huo J., Zhang Y. Hepatoprotective effect of diammonium glycyrrhizinate and neuroprotective effect of piperazine ferulate on AmB-induced liver and kidney injury by suppressing apoptosis in vitro and in vivo. Toxicon. 2024;246:107795. DOI: 10.1016/j.toxicon.2024.107795.
Review
For citations:
Sobhanian S.A., Ahmadi A., Roghani M., Hassanlo P., Khamoushi Sh. Protective activities of some bioactive components from Salvia officinalis extracts and essential oil in acetaminophen-induced model of acute liver and kidney injury in mice. Proceedings of Universities. Applied Chemistry and Biotechnology. https://doi.org/10.21285/achb.1002. EDN: UTMCYY


























