Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Biotechnological potential of cold-active enzymes in industry: A review of recent progress

https://doi.org/10.21285/achb.1004

EDN: AEBKRQ

Abstract

Psychrophilic and psychrotrophic microorganisms are widespread throughout the world and found in the depths of seas, lakes, and oceans, as well as in glaciers, polar regions, Arctic ice, caves, and on mountain peaks. Unlike their mesophilic and thermophilic counterparts, these microorganisms can survive in cold climates by expressing cold-adapted enzymes that have unique catalytic properties. Cold-active enzymes exhibit higher catalytic activity at low temperatures, structural flexibility of active sites, and thermolability. Due to the specified characteristics, these enzymes are becoming increasingly attractive for industrial use, as they can lower the energy costs of the reaction, decrease the number of side reactions, and are relatively easy to inactivate. In addition, increased structural flexibility can lead to broad substrate specificity, which expands their scope of application. Due to the relative simplicity of large-scale production (as compared to that of plant and animal enzymes), microbial enzymes are becoming increasingly attractive for commercial use, which contributes to the rapid development of the enzyme market. Cold-active enzymes can be used in various biotechnological and industrial processes: molecular biology, biotransformation, detergent production, food and beverage production, the textile industry, wastewater treatment, biocellulose production, environmental bioremediation in cold climates, etc. Of particular interest for various biotechnological processes are genetically modified strains producing certain types of cold-active enzymes. This article provides a review of several recent studies on the production of cold-active microbial enzymes and their application.

About the Authors

D. D. Belova
All-Russian Research Institute of Food Additives – a branch of the Federal Scientific Center for Food Systems named after V.M. Gorbatov, Russian Academy of Science
Russian Federation

Daria D. Belova, Cand. Sci. (Engineering), Senior Researcher

55, Liteiny Ave., Saint Petersburg, 191014



N. Yu. Sharova
All-Russian Research Institute of Food Additives – a branch of the Federal Scientific Center for Food Systems named after V.M. Gorbatov, Russian Academy of Science
Russian Federation

Natalya Yu. Sharova, Dr. Sci. (Engineering), Professor of the Russian Academy of Science, Deputy Director for Research

55, Liteiny Ave., Saint Petersburg, 191014



References

1. Mangiagalli M., Lotti M. Cold-active β-galactosidases: insight into cold adaptation mechanisms and biotechnological exploitation. Marine Drugs. 2021;19(1):43. DOI: 10.3390/md19010043.

2. Margesin R., Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Applied Microbiology and Biotechnology. 2019;103:2537-2549. DOI: 10.1007/s00253-019-09631-3.

3. Troncoso E., Barahona S., Carrasco M., Villarreal P., Alcaíno J., Cifuentes V., et al. Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biology. 2017;40:649-658. DOI: 10.1007/s00300-016-1988-9.

4. Hamid B., Bashir Z., Yatoo A.M., Mohiddin F., Majeed N., Bansal M., et al. Cold-active enzymes and their potential industrial applications – a review. Molecules. 2022;27(18):5885. DOI: 10.3390/molecules27185885.

5. Zhang J., Liu R., Xi S., Cai R., Zhang X., Sun C. A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea. The ISME Journal. 2020;14:2261-2274. DOI: 10.1038/s41396-020-0684-5.

6. Furhan J., Salaria N., Jabeen M., Qadri J. Partial purification and characterisation of cold-active metalloprotease by Bacillus sp. Ap1 from Apharwat peak, Kashmir. Pakistan Journal of Biotechnology. 2019;16(1):47-54. DOI: 10.34016/pjbt.2019.16.1.8.

7. Mangiagalli M., Brocca S., Orlando M., Lotti M. The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. New Biotechnology. 2020;55:5-11. DOI: 10.1016/j.nbt.2019.09.003.

8. Guo C., Zheng R., Cai R., Sun C., Wu S. Characterization of two unique cold-active lipases derived from a novel deep-sea cold seep bacterium. Microorganisms. 2021;9(4):802. DOI: 10.3390/microorganisms9040802.

9. Stark C., Bautista-Leung T., Siegfried J., Herschlag D. System investigation of the link between enzyme catalysis and cold adaptation. eLife. 2022;11:e72884. DOI: 10.7554/eLife.72884.

10. Santiago M., Ramírez-Sarmiento C.A., Zamora R.A., Parra L.P. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Frontiers in Microbiology. 2016;7:1408. DOI: 10.3389/fmicb.2016.01408.

11. Parvizpour S., Hussin N., Shamsir M.S., Razmara J. Psychrophilic enzymes: structural adaptation, pharmaceutical and industrial applications. Applied Microbiology and Biotechnology. 2021;105(3):899-907. DOI: 10.1007/s00253-020-11074-0.

12. Collins T., Margesin R. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Applied Microbiology and Biotechnology. 2019;103:2857-2871. DOI: 10.1007/s00253-019-09659-5.

13. Pucci F., Rooman M. Physical and molecular bases of protein thermal stability and cold adaptation. Current Opinion in Structural Biology. 2017;42:117-128. DOI: 10.1016/j.sbi.2016.12.007.

14. Brocca S., Ferrari C., Barbiroli A., Pesce A., Lotti M., Nardini M. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation. The FEBS Journal. 2016;283(23):4310-4324. DOI: 10.1111/febs.13925.

15. Mangiagalli M., Lapi M., Maione S., Orlando M., Brocca S., Pesce A., et al. The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement. The FEBS Journal. 2021;288(2):546-565. DOI: 10.1111/febs.15354.

16. Zanphorlin L.M., de Giuseppe P.O., Honorato R.V., Tonoli C.C.C., Fattori J., Crespim E., et al. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Scientific Reports. 2016;6:23776. DOI: 10.1038/srep23776.

17. Bruno S., Coppola D., di Prisco G., Giordano D., Verde C. Enzymes from marine polar regions and their biotechnological applications. Marine Drugs. 2019;17(10):544. DOI: 10.3390/md17100544.

18. Li Z., Wang L., Ren Y., Huang Y., Liu W., Lv Z., et al. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Discovery. 2022;8:413. DOI: 10.1038/s41420-022-01200-4.

19. Niu F., Yu Y., Li Z., Ren Y., Li Z., Ye Q., et al. Arginase: an emerging and promising therapeutic target for cancer treatment. Biomedicine and Pharmacotherapy. 2022;149:112840. DOI: 10.1016/j.biopha.2022.112840.

20. Caldwell R.W., Rodriguez P.C., Toque H.A., Narayanan S.P., Caldwell R.B. Arginase: a multifaceted enzyme important in health and disease. Physiological Reviews. 2018;98(2):641-665. DOI: 10.1152/physrev.00037.2016.

21. Yusof N.Y., Quay D.H.X., Kamaruddin S., Jonet M.A., Md Illias R., Mahadi N.M., et al. Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12. Extremophiles. 2024;28:15. DOI: 10.1007/s00792-024-01333-7.

22. Sun J., Yao C., Wang W., Zhuang Z., Liu J., Dai F., et al. Cloning, expression and characterization of a novel cold-adapted β-galactosidase from the deep-sea bacterium Alteromonas sp. ML52. Marine Drugs. 2018;16(120):469. DOI: 10.3390/md16120469.

23. Kuddus M., Roohi, Bano N., Sheik G.B., Joseph B., Hamid B., et al. Cold-active microbial enzymes and their biotechnological applications. Microbial Biotechnology. 2024;17(4):e14467. DOI: 10.1111/1751-7915.14467.

24. Lutz-Wahl S., Mozer H., Kussler A., Schulz A., Seitl I., Fischer L. A new β-galactosidase from Paenibacillus wynnii with potential for industrial applications. Journal of Dairy Science. 2024;107(6):3429-3442. DOI: 10.3168/jds.2023-24122.

25. Núñez-Montero K., Salazar R., Santos A., Gómez-Espinoza O., Farah S., Troncoso C., et al. Antarctic Rahnella inusitata: a producer of cold-stable β-galactosidase enzymes. International Journal of Molecular Sciences. 2021;22(8):4144. DOI: 10.3390/ijms22084144.

26. Liu Y., Wu Z., Zeng X., Weng P., Zhang X., Wang C. A novel cold-adapted phospho-beta-galactosidase from Bacillus velezensis and its potential application for lactose hydrolysis in milk. International Journal of Biological Macromolecules. 2021;166:760-770. DOI: 10.1016/j.ijbiomac.2020.10.233.

27. Kumar D., Kumar S.S., Kumar J., Kumar O., Mishra S.V., Kumar R., et al. Xylanases and their industrial applications: a review. Biochemical and Cellular Archives. 2017;17(1):353-360.

28. Pandey L.K., Kumar A., Dutt D., Singh S.P. Influence of mechanical operation on the biodelignification of Leucaena leucocephala by xylanase treatment. 3 Biotech. 2022;12:20. DOI: 10.1007/s13205-021-03024-y.

29. Cai Z.-W., Ge H.-H., Yi Z.-W., Zeng R.-Y., Zhang G.-Y. Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. International Journal of Biological Macromolecules. 2018;118:2176-2184. DOI: 10.1016/j.ijbiomac.2018.07.090.

30. Li X., Zhang L., Jiang Z., Liu L., Wang J., Zhong L., et al. A novel cold-active GH8 xylanase from cellulolytic myxobacterium and its application in food industry. Food Chemistry. 2022;393:133463. DOI: 10.1016/j.foodchem.2022.133463.

31. Malik S.M., Ayub M., Bhadra A., Manjula A.C., Modi R., Lavanya G., et al. Screening and production of cold-active xylanase from Truncatella Angustata (Bpf5) under submerged fermentation. European Chemical Bulletin. 2023;12(10):422-430. DOI: 10.48047/ecb/2023.12.si10.0046.

32. Song P., Zhang X., Wang S., Xu W., Wang F., Fu R., et al. Microbial proteases and their applications. Frontiers in Microbiology. 2023;14:1236368. DOI: 10.3389/fmicb.2023.1236368.

33. Farooq S., Nazir R., Ganai S.A., Ganai B.A. Isolation and characterization of a new cold-active protease from psychrotrophic bacteria of Western Himalayan glacial soil. Scientific Reports. 2021;11(1):12768. DOI: 10.1038/s41598-021-92197-w.

34. Furhan J., Awasthi P., Sharma S. Biochemical characterization and homology modelling of cold-active alkophilic protease from Northwestern Himalayas and its application in detergent industry. Biocatalysis and Agricultural Biotechnology. 2019;17:726-735. DOI: 10.1016/j.bcab.2019.01.028.

35. Chen K., Mo Q., Liu H., Yuan F., Chai H., Lu F., et al. Identification and characterization of a novel cold-tolerant extracellular protease from Planococcus sp. CGMCC 8088. Extremophiles. 2018;22:473-484. DOI: 10.1007/s00792-018-1010-2.

36. Mukhia S., Kumar A., Kumar R. Generation of antioxidant peptides from soy protein isolate through psychrotrophic Chryseobacterium sp. derived alkaline broad temperature active protease // LWT. 2021;143:111152. DOI: 10.1016/j.lwt.2021.111152.

37. Park H.J., Lee C.W., Kim D., Do H., Han S.J., Kim J.E., et al. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: structural adaptations to cold and functional analysis of a laundry detergent enzyme. PLoS One. 2018;13(2):e0191740. DOI: 10.1371/journal.pone.0191740.

38. Perfumo A., Freiherr von Sass G.J., Nordmann E.-L., Budisa N., Wagner D. Discovery and characterization of a new cold-active protease from an extremophilic bacterium via comparative genome analysis and in vitro expression. Frontiers in Microbiology. 2020;11:881. DOI: 10.3389/fmicb.2020.00881.

39. Adetunji A.I., Olaniran A.O. Production strategies and biotechnological relevance of microbial lipases: a review. Brazilian Journal of Microbiology. 2021;52:1257-1269. DOI: 10.1007/s42770-021-00503-5.

40. Ali S., Khan S.A., Hamayun M., Lee I.-J. The recent advances in the utility of microbial lipases: a review. Microorganisms. 2023;11(2):510. DOI: 10.3390/microorganisms11020510.

41. Chandra P., Enespa, Singh R., Arora P.K. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories. 2020;19:169. DOI: 10.1186/s12934-020-01428-8.

42. Sahay S., Chouhan D. Study on the potential of coldactive lipases from psychrotrophic fungi for detergent formulation. Journal of Genetic Engineering and Biotechnology. 2018;16(2):319-325. DOI: 10.1016/j.jgeb.2018.04.006.

43. Gupta K.K., Jagtap S., Priya R., Ramadas K. Purification, characterization of alkaline cold active lipase from Acinetobacter radioresistens PR8 and development of a new zymography method for lipase detection. Protein and Peptide Letters. 2018;25(10):897-907. DOI: 10.2174/0929866525666180905113206.

44. Abdella B., Youssif A.M., Sabry S.A., Ghozlan H.A. Production, purification, and characterization of coldactive lipase from the psychrotroph Pseudomonas sp. A6. Brazilian Journal of Microbiology. 2023;54:1623-1633. DOI: 10.1007/s42770-023-01079-y.

45. Novototskaya-Vlasova K.A., Rivkina E.M., Petrovskaya L.E., Dolgikh D.A., Kirpichnikov M.P. Characterization of a cold-active lipase from psychrobacter cryohalolentis k5t and its deletion mutants. Biohimiya. 2013;78(4):501-512. (In Russian). EDN: QBLFAB.

46. Rusakova D.A., Sidorenko M.L.1, Kim A.V. Characteristics of Psychrotolerant bacteria isolated from clay organogenic deposits of mramorny cave (Primorsky territory). Mikrobiologiya. 2024;93(1):79-90. (In Russian). DOI: 10.31857/S0026365624010086. EDN: EOPWGG.

47. Nwagu T.N., Aoyagi H., Okolo B., Moneke A., Yoshida S. Citraconylation and maleylation on the catalytic and thermodynamic properties of raw starch saccharifying amylase from Aspergillus carbonarius. Heliyon. 2020;6(7):e04351. DOI: 10.1016/j.heliyon.2020.e04351.

48. Kizhakedathil M.P.J., Devi C S. Acid stable α-amylase from Pseudomonas balearica VITPS19 – production, purification and characterization. Biotechnology Reports. 2021;30:e00603. DOI: 10.1016/j.btre.2021.e00603.

49. Frantz S.C., Paludo L.C., Stutz H., Spier M.R. Production of amylases from Coprinus comatus under submerged culture using wheat-milling by-products: optimization, kinetic parameters, partial purification and characterization. Biocatalysis and Agricultural Biotechnology. 2019;17:82-92. DOI: 10.1016/j.bcab.2018.11.004.

50. Cakmak U., Tuncay F.O., Kolcuoğlu Y. Cold active α-amylase obtained from Cladophora hutchinsiae – purification, biochemical characterization and some potential applications. Food Bioscience. 2022;50:102078. DOI: 10.1016/j.fbio.2022.102078.

51. Samanta A., Pradhan S., Jana S.C. Cold active amylase production from Bacillus cereus RGUJS2023. Tropical Journal of Natural Product Research. 2023;7(11):5172-5177. DOI: 10.26538/tjnpr/v7i11.20.

52. Arabaci N., Arikan B. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8. Preparative Biochemistry & Biotechnology. 2018;48(5):419-426. DOI: 10.1080/10826068.2018.1452256.


Review

For citations:


Belova D.D., Sharova N.Yu. Biotechnological potential of cold-active enzymes in industry: A review of recent progress. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(4):465-475. (In Russ.) https://doi.org/10.21285/achb.1004. EDN: AEBKRQ

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)