Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Use of bacterial cellulose to produce enzymatically active biomass of Debaryomyces hansenii yeast – a biocatalyst for the enantioselective reduction of acetophenone to S-1-phenylethanol

https://doi.org/10.21285/achb.1005

EDN: GXAQAR

Abstract

The study investigates the potential use of a biocomposite composed of bacterial cellulose and Debaryomyces hansenii yeast in enantioselective biocatalysis to produce enantiopure secondary alcohols. As a result of testing three strains of Debaryomyces hansenii yeast, it was determined that in the presence of an exogenous reducing agent (isopropanol), the biomass of strain D-43-1 reduces acetophenone enantioselectively to highly enantiopure S-1-phenylethanol (at least 99%). Cell immobilization of the Debaryomyces hansenii strain D-43-1 on a bacterial cellulose gel film yielded a biocomposite for the study of its effectiveness as a biocatalyst for acetophenone reduction or as an immobilized inoculum for the production of yeast biomass with carbonyl reductase activity. The use of biocomposite as a biocatalyst was found to be impossible: the product of acetophenone reduction was not detected in the reaction mixture. When used as an immobilized inoculum, biocomposite intensifies the production of enzymatically active yeast biomass suitable for the enantioselective reduction of acetophenone to enantiopure S-1-phenylethanol. The biomass yield achieved in the first fermentation cycle using the immobilized inoculant is three times higher than that produced using the planktonic inoculum. Four repeated fermentations during a 15-hour cell culture consistently achieve a biomass yield of approximately 13 g/L, which is almost twice the level achieved over the same period of time using planktonic inoculum. Biomass obtained using the biocomposite was shown to be reusable. At a biomass dry weight concentration of 40 g/L, the product yield consistently reaches 86–88% during the four transformation cycles, decreasing to 65% only in the fifth cycle.

About the Authors

N. I. Petukhova
Ufa State Petroleum Technological University
Russian Federation

Nadezhda I. Petukhova, Cand. Sci. (Biology), Associate Professor

1, Kosmonavtov St., Ufa, 450062



S. A. Kolobova
Ufa State Petroleum Technological University
Russian Federation

Svetlana A. Kolobova, Teacher

1, Kosmonavtov, St., Ufa, 450062



V. V. Zorin
Ufa State Petroleum Technological University
Russian Federation

Vladimir V. Zorin, Dr. Sci. (Chemistry), Professor

1, Kosmonavtov, St., Ufa, 450062



References

1. Choi S.M., Rao K.M., Zo S.M., Shin E.J., Han S.S. Bacterial cellulose and its applications. Polymers. 2022;14(6):1080. DOI: 10.3390/polym14061080.

2. Navya P.V., Gayathri V., Samanta D., Sampath S. Bacterial cellulose: a promising biopolymer with interesting properties and applications. International Journal of Biological Macromolecules. 2022;220:435-461. DOI: 10.1016/j.ijbiomac.2022.08.056.

3. Revin V.V., Liyaskina E.V., Parchaykina M.V., Kuzmenko T.P., Kurgaeva I.V., Revin V.D., et al. Bacterial cellulose-based polymer nanocomposites: a review. Polymers. 2022;14(21):4670. DOI: 10.3390/polym14214670.

4. Rogova E.A., Alashkevich Yu.D., Kozhukhov V.A., Lapin I.R., Kiselyov E.G. The state and prospects of improving the methods of obtaining and using bacterial cellulose (review). Chemistry of plant raw materials. 2022;4:27-46. (In Russian). DOI: 10.14258/jcprm.20220411373. EDN: ABGQJV.

5. Lu Y., Mehling M., Huan S., Bai L., Rojas O.J. Biofabrication with microbial cellulose: from bioadaptive designs to living materials. Chemical Society Reviews. 2024;53(14):7363-7391. DOI: 10.1039/d3cs00641g.

6. Hornung M., Ludwig M., Gerrard A.M., Schmauder H.-P. Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (part 1). Engineering in Life Sciences. 2006;6(6):537-545. DOI: 10.1002/elsc.200620162.

7. Zywicka A., Banach A., Junka A.F., Drozd R., Fijałkowski K. Bacterial cellulose as a support for yeast immobilization – correlation between carrier properties and process efficiency. Journal of Biotechnology. 2019;291:1-6. DOI: 10.1016/j.jbiotec.2018.12.010.

8. Gilbert C., Tang T.-C., Ott W., Dorr B.A., Shaw W.M, Sun G.L., et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nature Materials. 2021;20:691-700. DOI: 10.1038/s41563-020-00857-5.

9. Savitskaya I.S., Shokatayeva D.H., Kistaubayeva A.S., Ignatova L.V., Digel I.E. Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells. Heliyon. 2019;5(10):e02592. DOI: 10.1016/j.heliyon.2019.e02592.

10. Atta O.M., Manan S., Ahmed A.A.Q., Awa M.F., Ul-Islam M., Subhan F., et al. Development and characterization of yeast-incorporated antimicrobial cellulose biofilms for edible food packaging application. Polymers. 2021;13(14):2310. DOI: 10.3390/polym13142310.

11. Fijałkowski K., Peitler D., Rakoczy R., Żywicka A. Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT – Food Science and Technology. 2016;68:322-328. DOI: 10.1016/j.lwt.2015.12.038.

12. Zhao C., Wang G., Sun M., Cai Z., Yin Z., Cai Y. Bacterial cellulose immobilized S. cerevisiae as microbial sensor for rapid BOD detection. Fibers and Polymers. 2021;22:1208-1217. DOI: 10.1007/s12221-021-0650-5.

13. Tarasov S.E., Plekhanova Yu.V., Kitova A.E., Bykov A.G., Machulin A.V., Kolesov V.V., et al. Bacterial cellulose as a matrix for microorganisms in bioelectrocatalytic systems. Prikladnaya biokhimiya i mikrobiologiya. 2022;58(4):388-399. (In Russian). DOI: 10.31857/S0555109922040158. EDN: GQREUZ.

14. Xiao J., Chen Y., Xue M., Ding R., Kang Y., Tremblay P-L., et al. Fast-growing cyanobacteria bioembedded into bacterial cellulose for toxic metal bioremediation. Carbohydrate Polymers. 2022;295:119881. DOI: 10.1016/j.carbpol.2022.119881.

15. Kolobova S.A., Skorniakov A.N., Petukhova N.I., Alekseeva V.E., Khalimova L.Kh., Zorin V.V. Catechol oxidation by the biocomposite based on bacterial cellulose and spore-forming bacteria. Bashkirian Chemical Journal. 2023;30(4):48-55. (In Russian). DOI: 10.17122/bcj-2023-4-48-55. EDN: CZIHIA.

16. Lee S.H., Ahn G., Shin W.-R., Choi J.-W., Kim Y.-H., Ahn J.-Y. Synergistic outcomes of Chlorella-bacterial cellulose based hydrogel as an ethylene scavenger. Carbohydrate Polymers. 2023;321:121256. DOI: 10.1016/j.carbpol.2023.121256.

17. Kolobova S.A., Nazmutdinov D.Z., Petukhova N.I., Khalimova L.Kh. Bacterial cellulose – promising carrier for immobilization of phenol-destructing microorganisms. Bashkirian Chemical Journal. 2019;26(1):105-111. (In Russian). DOI: 10.17122/bcj-2019-1-105-111. EDN: ZIDSVI.

18. Żur J., Piński A., Michalska J., Hupert-Kocurek K., Nowak A., Wojcieszyńska D., et al. A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. International Biodeterioration & Biodegradation. 2020;149:104919. DOI: 10.1016/j.ibiod.2020.104919.

19. Yao W., Wu X., Zhu J., Sun B., Zhang Y.Y., Miller C. Bacterial cellulose membrane – a new support carrier for yeast immobilization for ethanol fermentation. Process Biochemistry. 2011;46(10):2054-2058. DOI: 10.1016/j.procbio.2011.07.006.

20. Zywicka A., Junka A., Ciecholewska-Juśko D., Migdał P., Czajkowska J., Fijałkowski K. Significant enhancement of citric acid production by Yarrowia lipolytica immobilized in bacterial cellulose-based carrier. Journal of Biotechnology. 2020;321:13-22. DOI: 10.1016/j.jbiotec.2020.06.014.

21. Wei J., Zhang X., Ai S., Huang Y., Yang X., Mei Y., et al. The effective astaxanthin productivities of immobilized Haematococcus pluvialis with bacterial cellulose. Bioresource Technology. 2022;344:126317. DOI: 10.1016/j.biortech.2021.126317.

22. Nazmutdinov D.Z., Poroshina N.N., Petukhova N.I. Debaryomyces hansenii d-43-1 - new halotolerant phenol destructor. Bashkirian Chemical Journal. 2018;25(2):57-63. (In Russian). DOI: 10.17122/bcj-2018-2-57-63. EDN: LYBVTN.

23. Prista C., Michán C., Miranda I.M., Ramos J. The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast. 2016;33(10):523-533. DOI: 10.1002/yea.3177.

24. Yaguchi A., Rives D., Blenner M. New kids on the block: emerging oleaginous yeast of biotechnological importance. AIMS Microbiology. 2017;3(2):227-247. DOI: 10.3934/microbiol.2017.2.227.

25. Ponamoreva O.N., Afonina E.L., Kamanina O.A., Lavrova D.G., Arliapov V.A., Alferov V.A., et al. Yeast Debaryomyces hansenii in ormosil shells as a heterogeneous biocatalyst. Biotekhnologiya. 2017;33(4):44-53. (In Russian). DOI: 10.21519/0234-2758-2017-33-4-44-53. EDN: ZEULVX.

26. Donzella S., Capusoni C., Pellegrino L., Compagno C. Bioprocesses with reduced ecological footprint by marine Debaryomyces hansenii strain for potential applications in circular economy. Journal of Fungi. 2021;7(12):1028. DOI: 10.3390/jof7121028.

27. Estrada M., Navarrete C., Moller S., Procentese A., Martínez J.L. Utilization of salt-rich byproducts from the dairy industry as feedstock for recombinant protein production by Debaryomyces hansenii. Microbial Biotechnology. 2023;16(2):404-417. DOI: 10.1111/1751-7915.14179.

28. Borowiecki P., Włoczewska M., Ochal Z. Asymmetric reduction of 1-(benzoazol-2-ylsulfanyl)propan-2-onesusing whole cells of Mortierella isabellina, Debaryomyces hansenii, Geotrichum candidum and Zygosaccharomyces rouxii. Journal of Molecular Catalysis B: Enzymatic. 2014;109:9-16. DOI: 10.1016/j.molcatb.2014.07.015.

29. Şahin E. Debaryomyces hansenii as a new biocatalyst in the asymmetric reduction of substituted acetophenones. Biocatalysis and Biotransformation. 2017;35(5):363-371. DOI: 10.1080/10242422.2017.1348500.

30. Chlipała P., Janeczko T., Mazur M. Bioreduction of 4′-hydroxychalcone in deep eutectic solvents: optimization and efficacy with various yeast strains. International Journal of Molecular Sciences. 2024;25(13):7152. DOI: 10.3390/ijms25137152.

31. Petukhova N.I., Zorin V.V., Sakaeva A.R., Mytyagina A.V., Nurieva E.R., Vydrina V.A., et al. Enantioselective bioreduction of 5-hexen-2-one in directional synthesis of insect pheromones. Russian Journal of Applied Chemistry. 2022;95:442-450. DOI: https://doi.org/10.1134/s1070427222030156.

32. Simić S., Zukić E., Schmermund L., Faber K., Winkler C.K., Kroutil W. Shortening synthetic routes to small molecule active pharmaceutical ingredients employing biocatalytic methods. Chemical Reviews. 2022;122(1):1052-1126. DOI: 10.1021/acs.chemrev.1c00574.

33. Vieira G., de Freitas Araujo D., Lemos T., de Mattos M., de Oliveira M., Melo V., et al. Candida tropicalis CE017: a new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones. Journal of the Brazilian Chemical Society. 2010;21(8):1509-1516. DOI: 10.1590/S0103-50532010000800015.

34. Sheiko E.A., Mednikova E.E., Vorobyeva T.E., Chanysheva A.R. Investigation of enantioselective bioreduction conditions of acetophenone to (S)-(-)-1-phenylethanol. Bashkirian Chemical Journal. 2018;25(1):55-58. (In Russian). DOI: 10.17122/bcj-2018-1-55-58. EDN: QOIUPB.

35. Kurtzman C.P., Fell J.W., Boekhout T. The yeasts: a taxonomic study. Amsterdam: Elsevier; 2011, 2354 p.

36. Shakirov A.N., Petukhova N.I., Zorin V.V. Enantioselective reduction of carbonyl compounds by yeasts Pichia fermentans 87-9. Bashkirian Chemical Journal. 2013;20(4):59-63. (In Russian). EDN: RVLKIH.

37. Petukhova N.I., Kolobova S.A., Nazmutdinova R.R., Zorin V.V. Cellulose synthesis by acetic acid bacteria isolates from mushroom tea. Bashkirian Chemical Journal. 2016;23(1):7-13. (In Russian). EDN: VSPLVX.

38. Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal. 1954;58(2):345-352. DOI: 10.1042/bj0580345.

39. Patel R.N. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coordination Chemistry Reviews. 2008;252(5-7):659-701. DOI: 10.1016/j.ccr.2007.10.031.

40. Goldberg K., Schroer K., Lütz S., Liese A. Biocatalytic ketone reduction – a powerful tool for the production of chiral alcohols – Part II: Whole-cell reductions. Applied Microbiology and Biotechnology. 2007;76:249-255. DOI: 10.1007/s00253-007-1005-x.

41. Kratzer R., Woodley J.M., Nidetzky B. Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions. Biotechnology Advances. 2015;33(8):1641-1652. DOI: 10.1016/j.biotechadv.2015.08.006.

42. Mityagina A.V., Rakhmanov T.R., Petukhova N.I., Zorin V.V. Enantioselective reduction of carbonyl compounds by whole cells of Rhodococcus erythropolis VKM АС-1161. Bashkirian Chemical Journal. 2022;29(1):29-36. (In Russian). DOI: 10.17122/bcj202212936. EDN: JIQGSM.

43. Erdélyi Bal., Szabó A., Seres G., Birincsik L., Ivanics J., Szatzker G., et al. Stereoselective production of (S)-1-aralkyl- and 1-arylethanols by freshly harvested and lyophilized yeast cells. Tetrahedron: Asymmetry. 2006;17(2):268-274. DOI: 10.1016/j.tetasy.2005.12.025.

44. Andryushina V.A., Balabanova T.V., Beklemishev A.B. Varfolomeev S.D., Vodyakova M.A., Demakov V.A., et al. Immobilized cells: biocatalysts and processes. Moscow: Izdatel’skii tsentr RIOR; 2018, 500 p. (In Russian). EDN: YOSKMP.

45. Nikolskaya A.B., Holstov A.V., Lyagin I.V., Mamedova F., Efremenko E.N., Varfolomeyev S.D. Immobilized Chlorella vulgaris cells in solution of alternative energy and ecology tasks. Alternative Energy and Ecology. 2012;4:95-100. (In Russian). EDN: PAVVTN.


Review

For citations:


Petukhova N.I., Kolobova S.A., Zorin V.V. Use of bacterial cellulose to produce enzymatically active biomass of Debaryomyces hansenii yeast – a biocatalyst for the enantioselective reduction of acetophenone to S-1-phenylethanol. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(4):515-527. (In Russ.) https://doi.org/10.21285/achb.1005. EDN: GXAQAR

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)