Use of microorganisms to recover metals from water bodies and create catalysts on their basis
https://doi.org/10.21285/achb.1006
EDN: ZEGLVF
Abstract
The study aimed to demonstrate the sorption ability of Paracoccus yeei VKM B-3302 cells to remove palladium nanoparticles from aqueous media. An important feature of this study was the size distribution analysis of palladium nanoparticles depending on the method used to store Paracoccus yeei VKM B-3302 cells after culture. The average diameter of palladium nanoparticles formed with the use of native (non-frozen) microbial cells was found to be equal to 3.99±0.03 nm, whereas in the case of microorganisms frozen at temperatures of minus 4 °С and minus 20 °С, it increased to 4.3±0.1 and 4.5±0.6 nm, respectively. These observations highlight the important role of the viability of Paracoccus yeei VKM B-3302 cells in the formation and stabilization of palladium nanoparticles, as well as in the determination of their size characteristics. The produced biohybrid materials exhibit pronounced catalytic activity and can be effectively used in Mizoroki – Heck cross-coupling reactions, which confirms their high functional significance. It is assumed that the retention and stabilization of palladium nanoparticles are ensured by a complex of chemical interactions, including amide bonds in proteins and carboxyl and amino groups of amino acids, as well as glycosidic bonds in polysaccharides, lipids, and peptidoglycan, which are part of the cell envelope. These components create a multifunctional matrix that enables reliable fixation and activity of nanoparticles.
About the Authors
O. A. KamaninaRussian Federation
Olga A. Kamanina, Cand. Sci. (Chemistry), Associate Professor, Leading Researcher
92, Lenin Ave., Tula, 300012
P. V. Rybochkin
Russian Federation
Pavel V. Rybochkin, Junior Researcher
92, Lenin Ave., Tula, 300012
V. N. Soromotin
Russian Federation
Vitaly N. Soromotin, Cand. Sci. (Chemistry), Senior Researcher
92, Lenin Ave., Tula, 300012
References
1. Kapoor R.T., Salvadori M.R., Rafatullah M., Siddiqui M.R., Khan M.A., Alshareef S.A. Exploration of microbial factories for synthesis of nanoparticles – a sustainable approach for bioremediation of environmental contaminants. Frontiers in Microbiology. 2021;12:658294. DOI: 10.3389/fmicb.2021.658294.
2. Olawade D.B., Wada O.Z., Fapohunda O., Egbewole B.I., Ajisafe O., Ige A.O. Nanoparticles for microbial control in water: mechanisms, applications, and ecological implications. Frontiers in Nanotechnology. 2024;6:1427843. DOI: 10.3389/fnano.2024.1427843.
3. Yamini V., Devi Rajeswari V. Effective bio-mediated nanoparticles for bioremediation of toxic metal ions from wastewater – a review. Journal of Environmental Nanotechnology. 2023;12(2):12-33. DOI: 10.13074/jent.2023.06.232467.
4. Nuzzo A., Hosseinkhani B., Boon N., Zanaroli G., Fava F. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community. Environmental Pollution. 2017;220:1068-1078. DOI: 10.1016/j.envpol.2016.11.036.
5. Kimber R.L., Lewis E.A., Parmeggiani F., Smith K., Bagshaw H., Gianolio D., et аl. Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: application for click chemistry. Small. 2018:14(10):1703145. DOI: 10.1002/smll.201703145.
6. Gomez-Bolivar J., Mikheenko I.P., Macaskie L.E., Merroun M.L. Characterization of palladium nanoparticles produced by healthy and microwave-injured cells of Desulfovibrio desulfuricans and Escherichia coli. Nanomaterials. 2019;9(6):857. DOI: 10.3390/nano9060857.
7. Mandeep, Shukla P. Microbial nanotechnology for bioremediation of industrial wastewater. Frontiers in Microbiology. 2020;11:590631. DOI: 10.3389/fmicb.2020.590631.
8. Bradski G. The OpenCV library. Doctor Dobbs Journal. 2000;25(11).
9. Stringer C., Pachitariu M. Cellpose3: one-click image restoration for improved cellular segmentation. Nature Methods. 2025;22(3):592-599. DOI: 10.1038/s41592-025-02595-5.
10. Chatterjee S., Bhattacharya S.K. Size-dependent catalytic activity and fate of palladium nanoparticles in Suzuki – Miyaura coupling reactions. ACS Omega. 2018;3(10):12905-12913. DOI: 10.1021/acsomega.8b01598.
11. Adams C.P., Walker K.A., Obare S.O., Docherty K.M. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One. 2014;9(1):e85981. DOI: 10.1371/journal.pone.0085981.
12. Deplanche K., Bennett J.A., Mikheenko I.P., Omajali J., Wells A.S., Meadows R.E., et al. Catalytic activity of biomass-supported Pd nanoparticles: influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals. Applied Catalysis B: Environmental. 2014;147:651-665. DOI: 10.1016/j.apcatb.2013.09.045.
13. Ariannezhad M., Pourmorteza N., Yousefi A., Esperi M. Catalytic reduction of nitroarenes and Suzuki – Miyaura reactions using Pd complex stabilized on the functionalized polymeric support. Chemical Physics Letters. 2022;793:139431. DOI: 10.1016/j.cplett.2022.139431.
14. Li Y., Yue-Su M.S., Zhang H.-Y., Zhang Y., Dong-Han M.S., Han Y.-P., et al. Synthesis of tetracyclic indolines through palladium-catalyzed asymmetric dearomative reaction of aryl iodides. ChemistrySelect. 2021;6(19):4719-4724. DOI: 10.1002/slct.202101238.
15. Egan-Morriss C., Kimber R.L., Powell N.A., Lloyd J.R. Biotechnological synthesis of Pd-based nanoparticle catalysts. Nanoscale Advances. 2022;4(3):654-679. DOI: 10.1039/d1na00686j.
16. Law C.K.Y., Bonin L., De Gusseme B., Boon N., Kundu K. Biogenic synthesis of palladium nanoparticles: new production methods and applications. Nanotechnology Reviews. 2022;11(1):3104-3124. DOI: 10.1515/ntrev-2022-0482.
17. Macaskie L.E., Collins J., Mikheenko I.P., Gomez-Bolivar J., Merroun M.L., Bennett J.A. Enhanced hydrogenation catalyst synthesized by Desulfovibrio desulfuricans exposed to a radio frequency magnetic field. Microbial Biotechnology. 2021;14(5):2041-2058. DOI: 10.1111/1751-7915.13878.
18. Schmitt J., Flemming H.-C. FTIR-spectroscopy in microbial and material analysis. International Biodeterioration & Biodegradation. 1998;41(1):1-11. DOI: 10.1016/S0964-8305(98)80002-4.
19. Mart M. The effect of the DNA support on Pd/DNA catalyzed organic transformations. Catalysis Science & Technology. 2024;14(13):3580-3588. DOI: 10.1039/D4CY00546E.
20. Omajali J.B., Mikheenko I.P., Merroun M.L., Wood J., Macaskie L.E. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. Journal of Nanoparticle Research. 2015;17:264. DOI: 10.1007/s11051-015-3067-5.
Review
For citations:
Kamanina O.A., Rybochkin P.V., Soromotin V.N. Use of microorganisms to recover metals from water bodies and create catalysts on their basis. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(4):495-502. (In Russ.) https://doi.org/10.21285/achb.1006. EDN: ZEGLVF


























