Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Volatile impurities in crude bioethanol produced from giant miscanthus

https://doi.org/10.21285/achb.1009

EDN: OCWINK

Abstract

The study of volatile impurities in crude bioethanol is of great technical importance for further catalytic conversion of bioethanol to industrial chemicals, as well as of considerable significance in the prevention of potable alcohol adulteration. This study was the first to analyze volatile impurities in crude bioethanol obtained from giant miscanthus using three proprietary pretreatment methods. These methods are based on treating raw materials with dilute nitric acid solutions at atmospheric pressure. The classical method for the pretreatment of cellulose-containing non-wood raw materials – alkaline delignification with sodium hydroxide – was used as the reference method. The resulting substrates were subjected to enzymatic hydrolysis (using Cellolux-A and Ultraflo Core preparations) together with alcoholic fermentation (using Saccharomyces cerevisiae Y-3136). The composition of crude bioethanol was determined using gas-liquid chromatography. The methodology used to produce bioethanol provided a means to obtain crude bioethanol with a methanol content of no more than 0.009 vol%, which is ten times lower than that regulated by industry codes. The purity of crude bioethanol samples is determined by two parameters: first, the number of pretreatment stages (two-stage pretreatment reduces the total amount of impurities in crude bioethanol by 4–21 times compared to single-stage pretreatment); second, a specific method of single-stage pretreatment (for example, pretreatment with nitric acid yields crude bioethanol with five times higher purity than in the case of the classical alkaline delignification).

About the Authors

E. A. Skiba
Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Ekaterina A. Skiba, Dr. Sci. (Engineering), Associate Professor, Leading Researcher

1, Sotsialisticheskaya St., Biysk, 659322



G. F. Mironova
Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Galina F. Mironova, Cand. Sci. (Engineering), Researcher

1, Sotsialisticheskaya St., Biysk, 659322



References

1. Kazmi A., Sultana T., Ali A., Nijabat A., Li G., Hou H. Innovations in bioethanol production: a comprehensive review of feedstock generations and technology advances. Energy Strategy Reviews. 2025;57:101634. DOI: 10.1016/j.esr.2024.101634.

2. Jain S., Kumar S. A comprehensive review of bioethanol production from diverse feedstocks: current advancements and economic perspectives. Energy. 2024;296:131130. DOI: 10.1016/j.energy.2024.131130.

3. Zhang Y., Oates L.G., Serate J., Xie D., Pohlmann E., Bukhman Y.V., et al. Diverse lignocellulosic feedstocks can achieve high field-scale ethanol yields while providing flexibility for the biorefinery and landscape-level environmental benefits. GCB Bioenergy: Bioproducts for a Sustainable Bioeconomy. 2018;10(11):825-840. DOI: 10.1111/gcbb.12533.

4. Turner W., Greetham D., Mos M., Squance M., Kam J., Du C. Exploring the bioethanol production potential of Miscanthus cultivars. Applied Sciences. 2021;11(21):9949. DOI: 10.3390/app11219949.

5. Osipov D.O., Dotsenko A.S., Semenova M.V., Rozhkova A.M., Sinitsyn A.P. Comparative study of the convertibility of pretreated Miscanthus straw using enzyme preparations produced by different recombinant strains of Penicillium verruculosum. Agronomy. 2024;14(3):499. DOI: 10.3390/agronomy14030499.

6. Zhang Z., Xu J., Jin S., Zhuang H., Li S., Wu X., et al. Considerable energy crop production potentials in the Russian Far East. Biomass and Bioenergy. 2024;189:107365. DOI: 10.1016/j.biombioe.2024.107365.

7. Gismatulina Y.A., Budaeva V.V., Kortusov A.N., Kashcheyeva E.I., Gladysheva E.K., Mironova G.F., et al. Evaluation of chemical composition of Miscanthus × giganteus raised in different climate regions in Russia. Plants. 2022;11(20):2791. DOI: 10.3390/plants11202791.

8. Shelekhova T.M., Abramova I.M., Shelekhova N.V., Skvortsova L.I., Poltavskaya N.V., Amelyakina M.V. Comparative analysis of the chemical composition of grain distillates of Russian and foreign production. Food Industry. 2024;10:110-114. (In Russian). DOI: 10.52653/PPI.2024.10.10.022. EDN: ZRUTEA.

9. Abramova I.M., Turshatov M.V., Krivchenko V.A., Soloviev A.O., Nikitenko V.D. Study of the biochemical composition of Jerusalem artichoke, as well as ethyl alcohol and food functional products obtained on its basis. Biotekhnologiya. 2022;38(4):56-61. (In Russian). DOI: 10.56304/S0234275822040020. EDN: DCDJRK.

10. Ageeva N.M., Tichonova A.N., Biryukov A.P. Effect of enzyme preparations on the aroma-forming components of red table wines. Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(2):251-260. (In Russian). DOI: 10.21285/2227-2925-2020-10-2-251-260. EDN: GRPOPD.

11. Habe H., Shinbo T., Yamamoto T., Sato S., Shimada H., Sakaki K. Chemical analysis of impurities in diverse bioethanol samples. Journal of the Japan Petroleum Institute. 2013;56(6):414-422. DOI: 10.1627/jpi.56.414.

12. Xiang H., Xin R., Prasongthum N., Natewong P., Sooknoi T., Wang J., et al. Catalytic conversion of bioethanol to value-added chemicals and fuels: a review. Resources Chemicals and Materials. 2022;1(1):47-68. DOI: 10.1016/j.recm.2021.12.002.

13. Sanchez N., Ruiz R., Hacker V., Cobo M. Impact of bioethanol impurities on steam reforming for hydrogen production: a review. International Journal of Hydrogen Energy. 2020;45(21):11923-11942. DOI: 10.1016/j.ijhydene.2020.02.159.

14. Sanchez N., Ruiz R., Plazas A., Vasquez J., Cobo M. Effect of pretreatment on the ethanol and fusel alcohol production during fermentation of sugarcane press-mud. Biochemical Engineering Journal. 2020;161:107668. DOI: 10.1016/j.bej.2020.107668.

15. Sanchez N., Cobo M., Rodriguez-Fontalvo D., Uribe-Laverde M.Á., Ruiz-Pardo R.Y. Bioethanol production from sugarcane press-mud: assessment of the fermentation conditions to reduce fusel alcohol. Fermentation. 2021;7(3):194. DOI: 10.3390/fermentation7030194.

16. Ovchinnikova E.V., Banzaraktsaeva S.P., Kovgan M.A., Chumachenko V.A. Effect of C3-alcohol impurities on alumina-catalyzed bioethanol dehydration to ethylene: experimental study and reactor modeling. Catalysts. 2023;13(3):509. DOI: 10.3390/catal13030509.

17. Tantayotai P., Krungkaew S., Fatriasari W., Chantarasiri A., Sriariyanun M., Panakkal E.J. A sustainable approach for the concurrent production of bioethanol and volatile compounds from agro residues using different yeast strains. Biomass and Bioenergy. 2025;201:108134. DOI: 10.1016/j.biombioe.2025.108134.

18. Kim J.S., Lee Y.Y., Kim T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology. 2016;199:42-48. DOI: 10.1016/j.biortech.2015.08.085.

19. Bhatia S.K., Jagtap S.S., Bedekar A.A., Bhatia R.K., Patel A.K., Pant D., et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresource Technology. 2020;300:122724. DOI: 10.1016/j.biortech.2019.122724.

20. Skiba E.A., Kashcheyeva E.I., Zolotukhin V.N., Kukhlenko A.A. Enzymatic hydrolysis of highly concentrated substrates obtained from Miscanthus giganteus. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(3):394-405. (In Russian). DOI: 10.21285/achb.933. EDN: YXAMLK.

21. Serba E.M., Overchenko M.B., Rimareva L.V. Biotechnological foundations of microbial conversion of concentrated grain wort to ethanol. Moscow: Biblio-Globus; 2017, 120 p. (In Russian). DOI: 10.18334/9785950050169.

22. Nassini D., Alvarez F.J., Bohé A.E., Olivieri A.C. Multivariate optimization of a gas chromatographic method for the determination of organic impurities in ethanol. Microchemical Journal. 2023;194:109332. DOI: 10.1016/j.microc.2023.109332.

23. Li G.-B., Chen J., Song B.-Q., Zhang X., Zhang Z., Pan R.-K., et al. Efficient purification of bioethanol by an ethanol-trapping coordination network. Separation and Purification Technology. 2022;293:121097. DOI: 10.1016/j.seppur.2022.121097.

24. Tantayotai P., Krungkaew S., Fatriasari W., Chantarasiri A., Sriariyanun M., Panakkal E.J. A sustainable approach for the concurrent production of bioethanol and volatile compounds from agro residues using different yeast strains. Biomass and Bioenergy. 2025;201:108134. DOI: 10.1016/j.biombioe.2025.108134.

25. Ovchinnikovа E.V., Mironova G.F., Banzaraktsaeva S.P., Skiba E.A., Budaeva V.V., Kovgan M.A., et al. Bioprocessing of oat hulls to ethylene: impact of dilute HNO<sub>3</sub>- or NaOH pretreatment on process efficiency and sustainability. ACS Sustainable Chemistry & Engineering. 2021;9(49):16588-16596. DOI: 10.1021/acssuschemeng.1c05112.

26. Villaverde J.J., Li J., Ek M., Ligero P., de Vega A. Native lignin structure of Miscanthus × giganteus and its changes during acetic and formic acid fractionation. Journal of Agricultural and Food Chemistry. 2009;57(14):6262-6270.

27. Li M., Si S., Hao B., Zha Y., Wan C., Hong S., et al. Mild alkali-pretreatment efectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresource Technology. 2014;169:447-454. DOI: 10.1016/j.biortech.2014.07.017.


Review

For citations:


Skiba E.A., Mironova G.F. Volatile impurities in crude bioethanol produced from giant miscanthus. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(4):590-596. (In Russ.) https://doi.org/10.21285/achb.1009. EDN: OCWINK

Views: 67


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)