Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Effect of ultrasonic treatment of birch bark on betulin yield in extraction from Betula

https://doi.org/10.21285/achb.1013

EDN: HIAWFL

Abstract

Betulin is a natural pentacyclic triterpenoid compound exhibiting a wide range of biological activity. The industrial use of betulin as a pharmaceutical substance requires addressing several key issues, including intensification of extraction from plant raw materials and improvement of its bioavailability. The present study was aimed at examining the effect of preliminary ultrasonic treatment of crushed birch bark on the efficiency of subsequent extraction and the characteristics of the target product. The conducted experiment shows that power optimization of ultrasonic treatment within the range of 250–300 W increases the yield of extractive substances to 37.0%; after the purification stage, the yield of the crystalline product (betulin) increases by 14.9% compared to the control sample (without ultrasonic treatment of phytomass), which in relative terms amounts to an excess of 43%. A comprehensive purity analysis of the obtained compound (thin-layer chromatography; infrared spectroscopy; melting temperatures of 257–259 °С) confirmed the high efficiency of the proposed purification method for removing related impurities and preserving the structural integrity of the target substance. Thus, the use of solvent extraction combined with the ultrasonic homogenization of birch bark phytomass increases the yield of the target high-purity product, as well as reducing the consumption of raw materials and extraction solvents. These advantages contribute significantly to efficient use of resources, which suggests that it is technologically and economically feasible to scale up this process.

About the Authors

H. Xu
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Huawei Xu, Postgraduate Student, Graduate School of Biotechnology and Food Science

12b, Politekhnicheskaya St., Akademicheskii municipal district, St. Petersburg, 195251



Ju. G. Bazarnova
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Julia G. Bazarnova, Dr. Sci. (Engineering), Director of Graduate School of Biotechnology and Food Science

12b, Politekhnicheskaya St., Akademicheskii municipal district, St. Petersburg, 195251



A. A. Balabaev
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Alexey A. Balabaev, Assistant Teacher, Graduate School of Biotechnology and Food Science

12b, Politekhnicheskaya St., Akademicheskii municipal district, St. Petersburg, 195251



References

1. Falamas A., Pinzaru S.C., Dehelean C., Peev C., Soica C. Betulin and its natural resource as potential anticancer drug candidate seen by FT-Raman and FT-IR spectroscopy. Journal of Raman Spectroscopy. 2011;42(1):97-107. DOI: 10.1002/jrs.2658.

2. Vorobyeva O.A., Malygina D.S., Grubova E.V., Melnikova N.B. Betulin derivatives. biological activity and solubility improvement. Chemistry of plant raw material. 2019;4:407-430. (In Russian). DOI: 10.14258/jcprm.2019045419. EDN: JWQQIC.

3. Ahmadu A.A., Delehouzé C., Haruna A., Mustapha L., Lawal B.A., Udobre A., et al. Betulin, a newly characterized compound in acacia auriculiformis bark, is a multi-target protein kinase inhibitor. Molecules. 2021;26(15):4599. DOI: 10.3390/molecules26154599.

4. Iftime M.-M., Ailiesei G.L., Shova S., Miron C., Tanaka H., Hori M., et al. New betulin imine derivatives with antioxidant and selective antitumor activity. New Journal of Chemistry. 2023;47(35):16551-16563. DOI: D3NJ02738D.

5. Tang J.-J., Li J.-G., Qi W., Qiu W.-W., Li P.-S., Li B.-L., et al. Inhibition of SREBP by betulin improves hyperlipidemia and insulin resistance. Cell Metabolism. 2011;13(1):44-56. DOI: 10.1016/j.cmet.2010.12.004.

6. Adepoju F.O., Sokolova K.V., Gette I.F., Danilova I.G., Tsurkan M.V., Mondragon A.C., et al. Protective effect of betulin on Streptozotocin–Nicotinamide-Induced diabetes in female rats. International Journal of Molecular Sciences. 2024;25(4):2166. DOI: 10.3390/ijms25042166.

7. Ko B.-S., Kang S., Moon B.R., Ryuk J.A., Park S. A 70% ethanol extract of mistletoe rich in betulin, betulinic acid, and oleanolic acid potentiated β-cell function and mass and enhanced hepatic insulin sensitivity. Evidence-Based Complementary and Alternative Medicine. 2016;2016:1-13. DOI: 10.1155/2016/7836823.

8. Fu Z.H., Jiang Y., Liu J., Lin Z.H., Jin Y., Du S., et al. Inhibitory effect of betulin on lipopolysaccharide-induced microglial inflammatory response. Chinese Journal of Immunology. 2021;37(2):128-133. (In Chinese). DOI: 10.13431/j.cnki.immunol.j.20210019.

9. Zhang L., Ma Z., Wang R., Zhu M. Synthesis and characterization of methacrylate-functionalized betulin derivatives as antibacterial comonomer for dental restorative resins. ACS Biomaterials Science & Engineering. 2021;7(7):3132-3140. DOI: 10.1021/acsbiomaterials.1c00563.

10. Tuli H.S., Sak K., Gupta D.S., Kaur G., Aggarwal D., Parashar N.C., et al. Anti-inflammatory and anticancer properties of birch bark-derived betulin: recent developments. Plants. 2021;10(12):2663. DOI: 10.3390/plants10122663.

11. Tao Y.W., Zhou H.D., Yu J. Protective effect of betulinic acid on osteoarthritis chondrocyte damage by regulating LncRNA MFI2-AS1. Chinese Pharmacist. 2022;25(1):49-54. (In Chinese). DOI: 10.19962/j.cnki.issn1008-049X.2022.01.008.

12. Takibayeva A.T., Zhumabayeva G.K., Bakibaev A.A., Demets O.V., Lyapunova M.V., Mamaeva E.A., et al. Methods of analysis and identification of betulin and its derivatives. Molecules. 2023;28(16):5946. DOI: 10.3390/molecules28165946.

13. Niu X., Zhu H., Mhatre S., Bi R., Ye Y., Rojas O.J. Betulin enables multifunctional cellulose-based insulative foams with low environmental impacts. ACS Nano. 2024;18(31):20247-20257. DOI: 10.1021/acsnano.4c04011.

14. Averyanova E.V., Shkolnikova M.N., Chugunova O.V. Antioxidant properties of triterpenoids in fat-containing products. Food Processing: Techniques and Technology. 2022;52(2):233-243. (In Russian). EDN: OZYTYK. DOI: 10.21603/2074-9414-2022-2-2358.

15. Averyanova E.V., Shkolnikova M.N. Improving the efficiency of betulin-containing food ingredients from silver birch (Betula pendula Roth.) in food systems. Chemistry of plant raw materials. 2022;4:333-341. (In Russian). DOI: 10.14258/jcprm.20220411171. EDN: GGNJYT.

16. Shkolnikova M.N., Pavlov I.N., Averyanova E.V., Rozhnov E.D., Chugunova O.V. Technological aspects of birch bark processing into a component of food systems for the population of the Arctic and the Far North. Proceedings of Universities. Applied Chemistry and Biotechnology. 2024;14(3):371-382. (In Russian). DOI: 10.21285/achb.929. EDN: OWECVD.

17. Wang D.W., Meng T.C., Li X. Study on the screening of betulin nanoemulsion prescriptions and optimization of preparation process. Tianjin Traditional Chinese Medicine. 2025;42(4):486-495. (In Chinese).

18. Lv M., Zheng Y., Wu J., Shen Z., Guo B., Hu G., et al. Evoking ferroptosis by synergistic enhancement of a cyclopentadienyl iridium-betulin immune agonist. Angewandte Chemie International Edition. 2023;62(48):e202312897. DOI: 10.1002/anie.202312897.

19. Adepoju F.O., Duru K.C., Li E., Kovaleva E.G., Tsurkan M.V. Pharmacological potential of betulin as a multitarget compound. Biomolecules. 2023;13(7):1105. DOI: 10.3390/biom13071105.

20. Wang X., Huang L., Li Y., Li G. Method and apparatus for comprehensive utilization of microalgae with ultrasonic cell wall disruption. Patent СN, no. 200580026510.3; 2008. (In Chinese).

21. Loginov A.G., Filippova K.P., Klintsov V.V. Improving the accuracy of the experiment on the PTP device. Dni nauki – 2017: tezisy dokl. konf. = Days of Science – 2017: abstracts of the conference reports. 3–7 April 2017, Samara. Samara: Samara State Technical University; 2017, p. 172-173. (In Russian). EDN: ZWVTJX.

22. Robert S.M.J., Aeri V. Development and validation of a high-performance thin-layer chromatography method for simultaneous estimation of α-Amyrin, Betulin and β-Sitosterin in Leptadenia reticulata and Marsdenia tenacissima. Separation Science Plus. 2024;7(2):2300092. DOI: 10.1002/sscp.202300092.

23. Xu H., Bazarnova J.G. PASS Online-prediction of pharmacological effects of betulin derivatives. In: BiOTekh – 2024: tezisy dokl. Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem = BioTech – 2024: Proc. Int. Sci. Pract. Conf. 16–19 April 2024, Saint Petersburg. Saint Petersburg: Politekh-Press; 2024, p. 23. (In Russian).

24. Kuznetsova S.A., Skvortsova G.P., Maliar Iu.N., Skurydina E.S., Veselova O.F. Extraction betulin from birch bark and study of its physicochemical and pharmacological properties. Chemistry of Plant Raw Material. 2013;(2):93-100. (In Russian). EDN: RCYKPV.


Review

For citations:


Xu H., Bazarnova J.G., Balabaev A.A. Effect of ultrasonic treatment of birch bark on betulin yield in extraction from Betula. Proceedings of Universities. Applied Chemistry and Biotechnology. 2025;15(4):487-494. (In Russ.) https://doi.org/10.21285/achb.1013. EDN: HIAWFL

Views: 53


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)