Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

INVESTIGATION OF THE HEAT RECOVERY PROCESS DURING THE HYDROGENATION OF VEGETABLE OILS IN FIXED-BED CATALYTIC REACTORS

https://doi.org/10.21285/2227-2925-2018-8-4-134-140

Abstract

In this research, we investigated the process of heat transfer from the mixture of cottonseed oil and hydrogen to the reactor wall during a vegetable oil hydrogenation reaction in a fixed-bed catalytic reactor. The dependence of the heat transfer coefficient on the flow rate of the gas-liquid mixture, and consequently, on the mixture feeding regime in the reactor, was established. The elucidation of the heat transfer mechanism during hydrogenation is important for controlling the process concerned. This process is known to occur with a significant thermal effect, which can lead to the overheating of the reactor and undesirable reaction products. The temperature regime determines not only the selectivity and rate of the chemical reaction, but also on the overall performance of the hydrogenation reactor. In this research, the process was studied using cottonseed oil with the addition of 30% hydrogenate and technical hydrogen. Nickel alloy in pellets with a size of 3-5 mm was used as a hydrogenation catalyst. The process was simulated in a reactor, which consisted of a thin-walled heat-insulated copper tube under a continuous heating regime. The temperature of the inner reactor wall was maintained constant at the level of 200 °C. The temperature inside the reactor was monitored using a four-zone thermocouple reader. As a result, dependencies between the heat transfer coefficient and the gas-liquid mixture flow regimes in the reactor have been established. The obtained dependencies provide a better understanding of heat transfer processes occurring in fixed catalyst beds. In order to increase the efficiency of vegetable oil hydrogenation, these dependencies should be taken into account during both the design of hydrogenation reactors and their operation. The calculation of the surface area, where the heat transfer takes place, and the amount of coolant used in the reactor is possible only with the use of these dependencies.

About the Authors

O. P. Bannykh
Saint-Petersburg State Institute of Technology
Russian Federation


O. V. Gilevskaya
Saint-Petersburg State Institute of Technology
Russian Federation


A. A. Evstifeeva
Saint-Petersburg State Institute of Technology
Russian Federation


References

1. Ковальская Л.П., Мелькина Г.М., Шебершнева Н.Н., Шикина В.С., Шуб И.С. Технология пищевых производств. М.: Колос, 1999. 752 с.

2. Томас Ч. Промышленные каталитические процессы и эффективные катализаторы / пер. с англ.; под ред. А.М. Рубинштейна. М.: Мир, 1973. 388 с.

3. Арутунян Н.С., Аришева Е.А., Янова Л.И., Захарова И.И., Меламуд Н.Л. Технология переработки жиров. М.: Агропромиздат, 1985. 368 с.

4. Потехин В.М., Потехин В.В. Основы теории химических процессов технологии органических веществ и нефтепереработки. 2-е изд., перераб. и доп. СПб.: Химиздат, 2007. 944 с.

5. О’Брайен Р. Жиры и масла. Производство. Состав и свойства. Применение / пер. с англ. СПб.: Профессия, 2007. 739 с.

6. Jogi S., Smith J.M. Heat transfer characteristics of porous rocks // A. J. Ch. I., 1960. V. 6. No. 1. P. 72-77.

7. Аэров М.Э., Тодес О.М., Наринский Д.А. Аппараты со стационарным зернистым слоем. Гидрав-лические и тепловые основы работы. Л.: Химия, 1979. 176 с.

8. Гилевская О.В., Банных О.П. Исследование гидродинамики восходящего потока в реакторе гидрирования растительного масла в неподвижном слое катализатора // Научный журнал НИУ ИТМО. Серия: Процессы и аппараты пищевых производств. 2017. N 2. С. 3-8.

9. Дехтярь Р.А., Соковский Д.Ф., Горин А.В., Мухин В.А. Теплообмен в зернистом слое при умеренных числах Рейнольдса // Теплофизика высоких температур. 2002. Т. 40. Вып. 5. С. 748-755.

10. Nasrin R. Heat-Mass Transfer in a Tubular Chemical Reactor International // International Journal of Energy Science and Engineering. 2015. V. 1. No. 2. P. 49-59. http://www.publicscienceframe-work.org/journal/ijese (Дата обращения: 18.11.2017)

11. Соколов В.Н., Доманский И.В. Газожидкостные реакторы. Л.: Машиностроение, 1976. 216 с.

12. ТУ 9145-181-00334534-95. Саломас нерафинированный для маргариновой продукции. TU 9145-181-00334534-95. Salomas nerafinirovannyi dlya margarinovoi produktsii [Specification 9145-181-00334534-95. Unrefined fat for margarine production]

13. Новый справочник химика и технолога. Сырье и продукты промышленности органических и неорганических веществ; в 2 ч. Ч. 2. СПб.: Профессионал, 2007. 1144. Stolyarova V.A. Novyi spravochnik khimika i tekhnologa. Syr’e i produkty promyshlennosti organicheskikh i neorganicheskikh veshchestv. Chast’ 2 [New reference book of chemist and technologist. Raw materials and products of the industry of organic and inorganic substances. Part 2]. St. Petersburg: Professional Publ., 2007, 1142 p

14. Фролов В.Ф. Теплообмен в системах с дисперсной фазой [Электронный ресурс] // Новый справочник химика и технолога. URL: http://chemana-lytica.com/book/novyy_spravochnik_khimika_tekhnologa/09_prot-sessy_i_apparaty_khimicheskikh_tekhnologiy_chast_I/5113 (19.11.2017.) Frolov V.F. Teploobmen v sistemakh s dispersnoi fazoi [Heat transfer in systems with a dispersed phase]. In: Novyi spravochnik khimika i tekhnologa [New reference book for chemist and technologist. Available at: http://chemanalytica.com/book/novyy_ spravochnik_khimika_i_tekhnologa/09_protsessy_i_ap-paraty_khimicheskikh_tekhnologiy_chast_I/5113 (accessed 19.11.2017)


Review

For citations:


Bannykh O.P., Gilevskaya O.V., Evstifeeva A.A. INVESTIGATION OF THE HEAT RECOVERY PROCESS DURING THE HYDROGENATION OF VEGETABLE OILS IN FIXED-BED CATALYTIC REACTORS. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(4):134-140. (In Russ.) https://doi.org/10.21285/2227-2925-2018-8-4-134-140

Views: 248


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)