Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Reductive amination of vinyl acetate and acrolein copolymers by polymixin B1 and the complexing properties of the resulting conjugates

https://doi.org/.org/10.21285/2227-2925-2019-9-1-28-35

Abstract

The reaction of reductive amination of vinyl acetate and acrolein copolymers by the cyclic polypeptide polymyxin B1 was investigated. The synthesis was carried out using copolymers with a molecular weight from 40 000 to 120 000 containing acrolein and vinyl alcohol units in amounts of up to 5-7 wt.% and 12 wt.%, respectively. The degree of peptide addition to the polymers is established to increase proportionally with a decrease in the molecular weight of the copolymers from 120 000 to 40 000 and an increase in the proportion of hydroxyl groups from 1 to 12 wt.%. The maximum degree of attachment was 7 wt.%. The (co)polymer-peptide conjugates are readily soluble in volatile organic solvents. During the solvent evaporation, thin transparent films are formed from their diluted alcohol or acetone solutions, firmly adhering to the surface of the glasses. A study of the biological properties (complexation) of a covalently bound peptide has shown the immobilisation of the conjugates on the glass surface without the effect on its interaction with bacterial lipopolysaccharides. The degree of extraction of lipopolysaccharides from biological fluid amounted to 80-90%. The modified polymers may be of interest as secondary reagents for a selective isolation and concentration of lipopolysaccharides from biological or technological media with a view of their subsequent study.

About the Authors

V. V. Shalygina
Institute of Macromolecular Compounds Russian Academy of Sciences
Russian Federation


M. Y. Smirnova
Institute of Macromolecular Compounds Russian Academy of Sciences
Russian Federation


Y. G. Karpacheva
Peter the Great Saint-Petersburg State Polytechnical University
Russian Federation


References

1. Chemical reactions of natural and synthetic polymers / Edit. by Lazar M., Blecha T., Rychly J. Chichester: Elis Horwood, 1989. 250 p.

2. Reactive Modifiers for polymers / Ed. by S. Al-Malaika London: Chapman and Hall, 1997. 415 p.

3. Roth P.J., Wiss K.T., Theato P. Post-Polymerization Modification // Polymer Science: A Comprehensive Reference. 2012. Vol. 5. No. 1. Р. 247-267. DOI:10.1016/B978-0-444-53349-4.00142-4

4. Duncan R. The dawning era of polymer therapeutics // Nat. Rev. Drug Discov. 2003. Vol. 2. No. 5. Р. 347-360. DOI: 10.1038/nrd1088

5. Haag R., Kratz F., Polymer therapeutics: concepts and applications // Angew. Chem. Int. Ed. Engl. 2006. Vol. 45. No. 8. Р. 1198-1215. DOI: 10.1002/anie.200502113

6. Shalygina V.V., Vlasova E.N., Gaydukova V.A., Anan’eva E.P., Panarin E.F. Modification of Polymyxin B1 by Water-Soluble Functional Copolymers of Vinyl Alcohol // Russian Journal of General Chemistry. 2018. Vol. 88. Issue 6. Р. 1194-1198. DOI: 10.1134/S1070363218060233

7. Margel S., Rembaum A. Synthesis and Characterization of Poly(glutaraldehyde). A Potential Reagent for Protein Immobilization and Cell Separation // Macromolecules. 1980. Vol. 13. No. 1. Р. 19-24. DOI: 10.1021/ma60073a004

8. Guisan J.M. Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzyme // Enzyme Microb. Technol. 1988. Vol. 10. No. 6. Р. 375-382. DOI: 10.1016/0141-0229(88)90018-X

9. Akhtar S., Husain Q. Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water // Chemosphere. 2006. Vol. 65. No. 7. Р. 1228-1235. DOI: 10.1016/j.chemosphere.2006.04.049

10. DiCosimo R., McAuliffe J., Poulose A.J., Bohlmann G. Industrial use of immobilized enzymes // Chem. Soc. Rev. 2013. Vol. 42. No.15. Р. 6437-6474. DOI: 10.1039/c3cs35506c

11. Копицына М.Н., Морозов А.С., Бессонов И.В., Писарев В.М. Методы определения бактериального эндотоксина в медицине критических состояний (обзор) // Общая реаниматология. 2017. Т. 13. N 5. С. 109-120. https://doi.org/10.15360/1813-9779-2017-5-109-120

12. Розенберг М.Э. Полимеры на основе винилацетата. Л.: Химия, 1983. 176 с.

13. Попова Г.С., Будтов В.П., Рябикова В.М., Худобина В.Г. Анализ полимеризационных пластмасс. Л.: Химия, 1988. 304 с.

14. Hermanson G.T. Bioconjugate Techniques. San Diego: Academic Press, 1996. 813 р.

15. Keleti G., Lederer W. H. Handbook of micromethods for the biological sciences. N.Y.: Van Nostrand Reinhold Co., 1974. 166 p.

16. Полимеризация виниловых мономеров / под ред. Д. Хэма; пер. с англ. М.А. Брука, В.А. Кронгауза. М.: Химия, 1973, 312 с.

17. Yasuji Oyanagi, Kurashiki Sity. Hydrolysis of acetal copolymers. Patent of USA, no. 3,055,866, 1962.

18. Petsch D., Anspach F.B. Endotoxin removal from protein Solutions // Journal Biotechnology. 2000. Vol. 76. No. 2-3. P. 97-119. DOI: 10.1016/S0168-1656(99)00185-6

19. Anspach F.B. Endotoxin removal by affinity sorbents // Journal of Biochemical and Biophysical Methods. 2001. Vol. 49. No. 1-3. Р. 665-681. DOI:10.1016/S0165-022X(01)00228-7


Review

For citations:


Shalygina V.V., Smirnova M.Y., Karpacheva Y.G. Reductive amination of vinyl acetate and acrolein copolymers by polymixin B1 and the complexing properties of the resulting conjugates. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(1):28-35. (In Russ.) https://doi.org/.org/10.21285/2227-2925-2019-9-1-28-35

Views: 256


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)