Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Accelerated and efficient method for isolating microRNA from human blood plasma

https://doi.org/.org/10.21285/2227-2925-2019-9-1-53-59

Abstract

He study is dedicated to solving the problem of microRNA extraction from human blood for further use of the microRNA profile in the diagnosis of various diseases. The aim of the work is to choose an effective, accelerated method for the isolation of microRNA from human blood plasma, sufficient in quantity for diagnosing in clinical practice. Comparison of three methods for obtaining microRNA was carried out: 1) using a silicon oxide-based QIAamp RNA Blood Mini Kit column, 2) phenol-chloroform extraction using TRIzol LS Reagent and 3) phenol-chloroform extraction using TRIzol Reagent. It was established that for the most complete isolation of total human RNA from human blood plasma in order to obtain microRNA, TRIzol LS Reagent can be efficiently used. Because its use allows obtaining microRNA in less time - 30-40 min, and in an amount sufficient for clinical analysis (total RNA - up to 0,116 ng/μl, and microRNA - 350,3 picograms/μl), and also with the least amount of concomitant messenger RNA and long non-coding RNA. Using TRIzol LS Reagent allows you to increase the output of miRNA by 2,7 times compared with the use of TRIzol Reagent.

About the Authors

I. A. Letova
Kazan National Research Technological University
Russian Federation


S. A. Madumarov
Kazan Federal University
Russian Federation


M. A. Sysoyeva
Kazan National Research Technological University
Russian Federation


R. Z. Shah Mahmud
Kazan Federal University; Interdisciplinary Center for Proteomic Research Institute of Fundamental Medicine and Biology Kazan Federal University e-mail: raihan.shah@kpfu.ru
Russian Federation


References

1. Wang J., Samuels D.C., Zhao S., Xiang Y., Zhao Y.-Y., Guo Y. Current Research on Non-Coding Ribonucleic Acid (RNA). Genes. 2017, vol. 8, no. 12, p. 366. https://doi.org/10.3390/genes8120366.

2. Makarova J.A., Shkurnikov M.U., Wicklein D., Lange T., Samatov T.R., Turchinovich A.A., Tonevitsky A.G. Intracellular and extracellular microRNA: An update on localization and biological role. Progress in Histochemistry and Cytochemistry. 2016, vol. 51, no. 3-4, pp. 33-49. DOI: 10.1016/j.proghi.2016.06.001.

3. Pospisilova S., Pazourkova E., Horinek A., Brisuda A., Svobodova I., Soukup V., Hrbacek J., Capoun O., Hanus T., Mares J., Korabecna M., Bab-juk M. MicroRNAs in urine supernatant as potential non-invasive markers for bladder cancer detection. Neoplasma. 2016, vol. 63, no. 5, pp. 799-808. DOI: 10.4149/neo_2016_518.

4. Wang F., Chen C., Wang D.W. Circulating microRNAs in cardiovascular diseases: from bio-markers to therapeutic targets. Frontiers of Medicine. 2014, vol. 8, no. 4, pp. 404-418.

5. Nielsen L.B., Wang C., Sourensen K., Bang-Berthelsen C.H., Hansen L., Andersen M.L., Hougaard P., Juul A., Zhang C.Y., Pociot F., Mortensen H.B. Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression. Journal of Diabetes Research. 2012, p. 7. DOI: 10.1155/2012/896362.

6. Guo Y., Vickers K., Xiong Y.H., Zhao S.L., Sheng Q.H., Zhang P., Zhou W.D., Flynn C.R. Comprehensive evaluation of extracellular small RNA isolation methods from serum in high throughput sequencing. BMC Genomics. 2017, vol. 18, pp. 1-9. DOI: 10.1186/s12864-016-3470-z.

7. Chen L., Yuan L., Wang G., Cao R., Peng J., Shu Bo, Qian G., Wang X., Xiao Y. Identification and bioinformatics analysis of miRNAs associated with human muscle invasive bladder cancer. Molecular Medicine Reports. 2017, vol. 16, no. 6, pp. 8709-8720. DOI: 10.3892/mmr.2017.7726.

8. Arunachalam G., Upadhyay R., Ding H., Trig-gle C.R. MicroRNA Signature and Cardiovascular Dysfunction. Journal of Cardiovascular Pharmacology. 2015, vol. 65, no. 5, pp. 419-429. DOI: 10.1097/FJC.0000000000000178.

9. Correia C.N., Nalpas N.C., McLoughlin K.E., Browne J.A., Gordon S.V., MacHugh D.E., Shaughnessy R.G. Circulating microRNAs as Potential Biomarkers of infectious Disease. Frontiers in Immunology. 2017, vol. 8, pp. 17. DOI: 10.3389/fim-mu.2017.00118.

10. Giulietti M., Occhipinti G., Principato G., Piva F. Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cellular Oncology. 2017, vol. 40, no. 2, pp. 181-192. DOI: 10.1007/s13402-017-0315-y.

11. Ortiz-Quintero B. Cell-free microRNAs in blood and other body fluids, as cancer biomarkers. Cell Proliferation. 2016, vol. 49, no. 3, pp. 281-303. DOI: 10.1111/cpr.12262.

12. Rice J., Roberts H., Burton J., Pan J., Sta-tes V., Rai N.S., Galandiuk S. Assay reproducibility in clinical studies of plasma miRNA. PLOS ONE. 2015, vol. 10 (4), pp. 1-23. DOI: 10.1371/journal.po-ne.0121948.

13. Channavajjhala S.K.; Rossato M., Morandini F., Castagna A., Pizzolo F., Bazzoni F., Olivieri O. Optimizing the purification and analysis of miRNAs from urinary exosomes. Clinical Chemistry and Laboratory Medicine. 2014, vol. 52, no. 3, pp. 345-354. DOI: 10.1515/cclm-2013-0562.

14. Gautam A., Kumar R., Dimitrov G., Hoke A., Hammamieh R., Jett M. Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods. Molecular Biology Reports. 2016, vol. 43, no. 10, pp. 1165-1178. DOI: 10.1007/s11033-016-4043-6.

15. Sourvinou I., Markou A., Lianidou E. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. The Journal of Molecular Diagnostics. 2013, vol. 15 (6), pp. 1-8. DOI: 10.1016/j. jmoldx.2013.07.005.

16. Duy J., Koehler J.W., Honko A., Minogue T.D. Circulating microRNA profiles of Ebola virus infection. BMC Genomics. 2015, vol. 16, no. 95, pp. 1-9. DOI: 10.1038/srep24496

17. van der Eerden B.C., Alves R.D., Kockx C.E. Identification of microRNAs in human plasma. Methods in Molecular Biology. 2015, vol. 1226, pp. 71-85. DOI: 10.1007/978-1-4939-1619-1_7.

18. El-Khoury V., Pierson S., Kaoma T., Bernar-din F., Berchem G. Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Scientific Reports. 2016, vol. 6, pp. 1-14. DOI: 10.1038/srep19529.

19. McDonald J.S., Milosevic D., Reddi H.V., Grebe S.K., Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clinical chemistry. 2011, vol. 57, pp. 833-840. Doi: 10.1373/clinchem.2010.157198.

20. Akberova N.I. Opisatel’naya statistika. Interval’nye otsenki [Descriptive statistics. Interval evaluations: academic manual and exercise manuals for practical classes on the course «Mathematical Methods in Biochemistry»]. Kazan: Publishing house of Kazan State University named after V.I. Ul’yanov-Lenin, 2004. 40 p


Review

For citations:


Letova I.A., Madumarov S.A., Sysoyeva M.A., Shah Mahmud R.Z. Accelerated and efficient method for isolating microRNA from human blood plasma. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(1):53-59. (In Russ.) https://doi.org/.org/10.21285/2227-2925-2019-9-1-53-59

Views: 432


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)