Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Use of high-resolution NMR spectra transformed by paramagnetic complexes for studying molecular structure

https://doi.org/10.21285/2227-2925-2019-9-2-183-193

Abstract

This paper provides an overview of the features specific to the nuclear magnetic resonance (NMR) of paramagnetic molecules. These features can be attributed to the hyperfine or electronic coupling between unpaired electrons, which are localised on the coordinating ion, and resonant nuclei. That leads both to the paramagnetic broadening and to the paramagnetic shifts (contact and pseudo-contact ones) of resonance lines in the NMR spectra. A contact shift is observed when the probability of an unpaired electron location in the place of a resonant nucleus differs from zero. Therefore, these shifts constitute a source of information on the nature of the metal-ligand bond as well as on the ligand electronic structure. Pseudo-contact shifts characterise the spatial structure of the molecule, thus being important for solving various structural problems. This paper covers pioneering works describing the specifics of the NMR spectra transformed by adding paramagnetic complexes of iron-group elements on the example of cobalt and nickel complexes, as well as complexes of rare-earth elements on the example of europium. We present main features of the paramagnetic additives method, allowing resolution of difficulties associated with large paramagnetic broadening of resonance lines in high-resolution NMR spectra. Of iron-group elements, a paramagnetic ion Co2+ is shown to be an effective shift reagent. In some cases, a Ni2+ ion may also be used for this purpose. The paper covers conditions for recording the NMR spectra of samples containing paramagnetic additives; solvents used for this purpose; as well as temperature variations of the studied samples in the context of resonance signal detection. 

About the Author

V. K. Voronov
Irkutsk National Research Technical University
Russian Federation

Dr. Sci. (Chemistry), Professor,

Irkutsk



References

1. Pople J.A., Schneider W.G., Bernstein H.J. High-resolution nuclear magnetic resonance. New York: Mc-Graw-Hill, 1959. (Russ ed.: Popl Dzh., Shneider V., Bernstein G. Spektry yadernogo magnitnogo rezonansa vysokogo razresheniya. Moscow: Inostrannaya literatura Publ., 1962, 592 p.)

2. Emsley J.W., Feeney J. Sutcliffe L.H. High resolution nuclear magnetic resonance spectroscopy. Oxford: Pergamon Press. 1965. (Russ ed.: Emsli Dzh., Finei Dzh., Satklif L. Spektroskopiya yadernogo magnitnogo rezonansa vysokogo razresheniya. Moscow: Mir Publ., vol. 1, 1968, 630 p.; vol. 2, 1969, 468 p.)

3. Carrington A., McLachlan A.D. Introduction to magnetic resonance with application to chemistry and chemical physics. New York, Evanston, London: Harper & Row Publ., 1967. (Russ. Ed.: Kerrington A., Mak-LechlanE. Magnitnyi rezonans i ego primenenie v khimii. Moscow: Mir Publ., 1970, 447 p.)

4. Kheberlen U., Mering M. YaMR vysokogo razresheniya v tverdykh telakh [NMR high resolution in solids]. Moscow: Mir Publ., 1980, 504 p.

5. Slichter C.P. Principles of magnetic resonance. Berlin, Heidelberg, New York: SpringerVerlag, 1980. (Russ. Ed.: Slikter Ch.P. Osnovy teorii magnitnogo rezonansa. Moscow: Mir Publ., 1981, 448 p.)

6. Sergeev N.M. Spektroskopiya YaMR (dlya khimikov-organikov) [NMR spectroscopy for organic chemists]. Moscow: Moscow State University Publ., 1981, 279 p.

7. Fedotov M.A. Yadernyi magnitnyi rezonans v rastvorakh neorganicheskikh veshchestv [Nuclear magnetic resonance in solutions of inorganic substances]. Novosibirsk: Nauka Publ., 1986, 196 p.

8. Ernst R., Bodenkhauzen Dzh., Vokaun A. YaMR v odnom i dvukh izmereniyakh [Principles of Nuclear Magnetic Resonance in One and Two Dimensions]. Moscow: Mir Publ., 1990, 711 p.

9. Chizhik V.I., Chernyshev Yu.S., Donets V., Frolov V.V., Komolkin A.V., Shelyapina M.G. Magnetic Resonance and its Applications. Switzerland: Springer International Publishing, 2014, 773 р.

10. Panyushkin V.T., Chernysh Yu.E., Volynkin V.A., Borodkin G.S., Borodkina I.G. Yadernyi magnitnyi rezonans v strukturnykh issledovaniyakh [Nuclear magnetic resonance in structural researches]. Moscow. KRASAND Publ., 2016, 352 p.

11. Ushakov I.A.,Voronov V.K., Adamovich S.N., Mirskov R.G., Mirskova A.N. The NMR study of biologically active metallated alkanol ammoinium ionic liquids. Journal of Molecular Structure. 2016, vol. 1103, pp. 125–131. DOI: 10.1016/j.molstruc.2015.08.074.

12. Alkorta I., Elguero J., Denisov G.S. A review with comprehensive data on experimental indirect scalar NMR spin-spin coupling constants across hydrogen bonds. Magnetic Resonance in Chemistry. 2008, vol. 46, no. 7, pp. 599−624. DOI: 10.1002/mrc.2209

13. Lodewyk M.W., Siebert M.R., Tantillo D.J. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 2012, vol. 112, pp. 1839−1862. DOI: 10.1021/cr200106v

14. Babailov S.P. Lanthanide paramagnetic probes for NMR spectroscopic studies of molecular conformational dynamics in solution: Applications to macrocyclic molecules. Progress in Nuclear Magnetic Resonance Spectroscopy. 2008, vol. 52, no. 1, pp. 1−21. DOI: 10.1016/j.pnmrs.2007.04.002.

15. Voronov V.K., Ushakov I.A. High-resolution nuclear magnetic resonance in paramagnetic complexes. Uspekhi khimii. 2010, vol. 79, pp. 835−847. (In Russian). DOI: 10.1070/RC2010v079n10ABE H004157

16. Di Pietro S., Piano S.L., Di Bari L. Pseudocontact shifts in lanthanide complexes with variable crystal field parameters. Coordination Chemistry Reviews. 2012, vol. 255, no. 23–24, pp. 2810−2820. DOI: 10.1016/j.ccr.2011.05.010

17. Bertini I., Luchinat C., Parigi G. Moving the frontiers in solution and solid-state bioNMR. Coordination Chemistry Reviews. 2011, vol. 255, issue 7-8, pp. 649−663. DOI: 10.1016/j.ccr.2010.09.001.

18. Iton D.R., Fillips V.D. Eaton D.R, Phillips V.D. Nuclear magnetic resonance in paramagnetic compounds. Zhurnal strukturnoi khimii. 1968, vol. 9, no. 1, pp. 153–183. (In Russian)

19. Hinckley C.C. Paramagnetic shifts in solutions of cholesterol and the dipyridine adduct of tris(dipivalomethanato) europium(III). A shift reagent. J. Am. Chem. Soc. 1969, vol. 91, no. 18, pp. 5160–5162.

20. Sanders J.K.M., Williams D.H. A shift reagent for use in NMR spectroscopy. A first-order spectrum of n-hexanol. Chem. Com. 1970, no. 7, pp. 422–423.

21. Voronov V.K., Podoplelov A.V. Paramagnetic complexes in high resolution NMR spectroscopy. New York: Nova Science Publishers, 2015, 181 p.

22. Zaev E.E., Voronov V.K., Shvartsberg M.S., Vasilevsky S.F., Molin Yu.N. Kotljarevsky I.L. Application of paramagnetic additions to the structure determination of some pyrazoles by NMR. Tetrahedron Letters. 1968, no. 5, pp. 617–622.

23. Andersson J., Hedin P., Johansson J., Nordström I., Nydén M. Coordination of imidazolesby Cu(II) and Zn(II) as studied by NMR relaxometry, EPR, far-FTIR vibrational spectroscopy and ab initio calculations: effect of methyl substitution. The Journal of Physical Chemistry. A. 2010, vol. 114, no. 50, pp. 13146−13153. DOI: 10.1007/s00396-011-2461-5

24. Voronov V.K., Ushakov I.A., Baikalova L.V. Spectra of NMR paramagnetic complexes 1- vinililmidazol with elements of the group of Iron. Izvestiya Akademii nauk. Seriya khimicheskaya. 2005, no. 6, pp. 1430–1433. (In Russian).

25. Hiller S., Wider G., Wüthrich, K. APSY-NMR with proteins: practical aspects and backbone assignment. Journal of Biomolecular NMR. 2008, vol. 42, issue 3, pp. 179–195. DOI: 10.1007/s10858-008-9266-y

26. Hornemann S., von Schroetter C., Damberger F.F., Wüthrich, K. Prion protein–detergent micelle interactions studied by NMR in solution. J. Biol. Chem. 2009, vol. 284, no. 34, pp. 22713–22721. DOI: 10.1074/jbc.M109.000430.

27. Jaroniec C.P. Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes. Solid State Nuclear Magnetic Resonance. 2012, vol. 43-44, pp. 1−13. DOI: 10.1016/j.ssnmr.2012.02.007

28. Voronov V.K., Ushakov I.A., Shmelev V.V., Sagdeev D.R. Peculiarities of intramolecular exchange and valence tautomerism in metal semiquinolates determined by high-resolution NMR spectroscopy. Magn. Reson. Chem. 2012, vol. 50, no. 5, pp. 350−356. DOI: 10.1002/mrc.3799.

29. Voronov V.K. NMR Spectra Transformed by Electron-Nuclear Coupling as Indicator of Structural Peculiarities of Magnetically Active Molecular Systems. J. Phys. Chem. A. 2016, vol. 120, pp. 6688−6692. DOI: 10.1021/acs.jpca.6b05319.

30. Voronov V.K., Ushakov I.A. Structure and Intramolecular Dynamics of Biologically Active Compounds: Analysis of NMR Spectra Transformed by Spin Labels. Applications of NMR Spectroscopy. 2016, vol. 5, pp. 159–218. DOI: 10.2174/9781681082875116050006

31. Babailov S.P., Peresypkinaa E.V., Journaux Y., Vostrikova K.E. Nickel(II) complex of a biradical: structure, magnetic properties, high NMR temperature sensitivity and moderately fast molecular dynamics. Sensors and Actuators. B: Chemical. 2017, vol. 239, pp. 405–412. DOI: 10.1016/j.snb.2016.08.015.

32. Abraham R.J., Filippi M., Petrillo G., Piaggio P., Vladiskovic C., Sancassan F. A theoretical and NMR lanthanide‐induced shift (LIS) investigation of the conformations of lactams. Magn. Reason. Chem. 2017, vol. 55, no. 12, pp. 1059–1072. DOI: 10.1002/mrc.4643.


Review

For citations:


Voronov V.K. Use of high-resolution NMR spectra transformed by paramagnetic complexes for studying molecular structure. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(2):183-193. (In Russ.) https://doi.org/10.21285/2227-2925-2019-9-2-183-193

Views: 306


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)