On why benzylidene protecting groups are not effective for formylphenol glycosides
https://doi.org/10.21285/2227-2925-2019-9-2-212-221
Abstract
Keywords
About the Authors
K. M. FaiskanovaRussian Federation
Master Student,
Tomsk
E. V. Stepanova
Russian Federation
Ph.D. (Chemistry), Senior Lecturer, Research School of Chemistry & Applied Biomedical Sciences,
Tomsk
References
1. Wuts P.G.M., Greene T.W. Greene's protective groups in organic synthesis. John Wiley & Sons, 2006, 1400 p.
2. Zong G., Barber E., Aljewari H., Zhou J., Hu Z., Du, Y., Shi W. Total synthesis and biological evaluation of ipomoeassin F and its unnatural 11 R-epimer. The Journal of Organic Chemistry. 2015, vol. 80, no. 18, pp. 9279–9291. DOI: 10.1021/acs. joc.5b01765
3. Guo J., Ye X.S. Protecting groups in carbohydrate chemistry: influence on stereoselectivity of glycosylations. Molecules. 2010, vol. 15, no. 10, pp. 7235–7265. DOI: 10.3390/molecules15107235
4. Wang C.C., Lee J.C., Luo S.Y., Kulkarni S.S., Huang Y.W., Lee C.C., Chang K.L., Hung S.C. Regioselective one-pot protection of carbohydrates. Nature. 2007, vol. 446, no. 7138, pp. 896–899. DOI: 10.1038/nature05730
5. Picard S., Bouyssou P., Chenault J. Hemisynthesis of the naturally occurring tremuloidin. Phytochem. 1992, vol. 31, no. 8, pp. 2909–2910. DOI: 10.1016/0031-9422(92)83663-J
6. Shao C., Pei Y., Borg-Karlson A.K., Pei Z. Regioselective acylation of 2′-or 3′-hydroxyl group in salicin: Hemisynthesis of acylated salicins. Chemical Research in Chinese Universities. 2014, vol. 30, issue 5, pp. 774–777. DOI: 10.1007/s40242-014-4041-y
7. Boeckler G. A., Gershenzon J., Unsicker S. B. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry. 2011, vol. 72, no. 13, pp. 1497–1509. DOI: https://doi.org/10.1016/j.phytochem.2011.01.038
8. Akao T., Yoshino T., Kobashi K., Hattori M. Evaluation of salicin as an antipyretic prodrug that does not cause gastric injury. Planta medica. 2002, vol. 68, no. 8, pp. 714–718. DOI: 10.1055/s-2002-33792
9. Kim C.S., Subedi L., Park K.J., Kim S.Y., Choi S.U., Kim K.H., Lee K.R. Salicin derivatives from Salix glandulosa and their biological activities. Fitoterapia. 2015, vol. 106, pp. 147–152. DOI: 10. 1016/j.fitote.2015.08.013
10. Singh A., Malhotra S., Subban R. Antiinflammatory and analgesic agents from Indian medicinal plants. International Journal of Integrative Biology. 2008, vol. 3, no. 1, pp. 57–72.
11. Stepanova E.V., Belyanin M.L., Filimonov V.D. Synthesis of acyl derivatives of salicin, salirepin, and arbutin. Carbohydrate research. 2014, vol. 388C, no. 1, pp. 105–111. DOI: 10.1016/j.carres.2014.02.014
12. Pearl I.A., Darling S.F. Studies on the leaves of the family salicaceae, III. Migration of acyl groups during isolation of glycosides from Populus grandidentata leaves. Archives of Biochemistry and Biophysics. 1963, vol.102, pp. 33–38. DOI: 10. 1016/0003-9861(63)90316-3
13. de Souza T.B., Bretas A.C.O., Alves R.J., Magalhães T.F.F., Stoianoff, M.A.R. Synthesis and antifungal activity of palmitic acid-based neoglycolipids related to papulacandin D // Química Nova. 2015, vol. 38, no. 10, pp. 1282–1288. DOI: 10.59 35/0100-4042.20150156
14. Wilson W.E., Johnson S.A., Perkins W.H., Ripley J.E. Gas-chromatographic analysis of cardiac glycosides and related compounds. Anal. Chem. 1967, vol. 39, no. 1, pp. 40–44. DOI: 10.1021/ac60245a002
15. Fei G., Fan X., Ma H., Fan P., Jia Z., Ling L. Synthesis of glycosylated chrysin derivatives via ester linkers. Chemistry of Natural Compounds. 2016, vol. 52, no. 4, pp. 602–610. DOI: 10.1007/s10600-016-1721-5
16. Ren B., Wang M., Liu J., Ge J., Zhang X., Dong H. Zemplén transesterification: a name reaction that has misled us for 90 years. Green Chemistry. 2015, vol. 17, pp. 1390–1394. DOI: 10.1039/C4GC02006E
17. Kim K.S., Kim J.H., Lee Y.J., Lee Y.J., Park J. 2-(Hydroxycarbonyl) benzyl glycosides: a novel type of glycosyl donors for highly efficient β-mannopyranosylation and oligosaccharide synthesis by latentactive glycosylation. Journal of American Chemical Society. 2001, vol. 123, no. 35, pp. 8477–8481. DOI: 10.1021/ja015842s
18. da Silva I.C.G., de Pontes Santos H.B., Cavalcanti Y.W., Nonaka C.F., de Sousa S.A., de Castro R.D. Antifungal Activity of Eugenol and its Association with Nystatin on Candida albicans. Pesquisa Brasileira em Odontopediatria e Clínica Integrada. 2017, vol. 17, no. 1, pp. 1–8. DOI: 10.40 34/PBOCI.2017.171.16
19. Stepanova E.V., Nagornaya M.O., Filimonov V.D., Valiev R.R., Belyanin M.L., Drozdova A.K., Cherepanov V.N. A new look at acid catalyzed deacetylation of carbohydrates: A regioselective synthesis and reactivity of 2-O-acetyl aryl glycopyranosides. Carbohydrate Research. 2018, vol. 458, pp. 60–66. DOI: 10.1016/j.carres.2018.02.003
20. Reyes L., Nicolás-Vázquez I., Mora-Diez N., Alvarez-Idaboy J.R. Acid-catalyzed nucleophilic additions to carbonyl groups: is the accepted mechanism the rule or an exception? The Journal of Organic Chemistry. 2013, vol. 78, no. 6, pp. 2327–2335. DOI: 10.1021/jo302390r
21. Zhang Lei, Haoran Li Yong Wang, [ingbang Hu Characterizing the structural properties of N, N-dimethylformamide-based ionic liquid: Density-functional study. Physical Chemistry B. 2007, vol. 111, no. 37, pp. 11016–11020. DOI: 10.1021/jp0749064
Review
For citations:
Faiskanova K.M., Stepanova E.V. On why benzylidene protecting groups are not effective for formylphenol glycosides. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(2):212-221. (In Russ.) https://doi.org/10.21285/2227-2925-2019-9-2-212-221