Methods for estimating the activity coefficients of strong acids across the concentration range from 1 to 10 mol/l
https://doi.org/10.21285/2227-2925-2019-9-2-232-238
Abstract
About the Authors
B. B. TanganovRussian Federation
Dr. Sci. (Chemistry), Professor,
Ulan-Ude, Republic of Buryatia
M. E. Zayakhanov
Russian Federation
Dr. Sci. (Engineering), Professor,
Ulan-Ude, Republic of Buryatia
A. V. Bituyev
Russian Federation
Dr. Sci. (Engineering), Professor,
Ulan-Ude, Republic of Buryatia
References
1. Kharned G., Ouehn B. Harned H., Owen B. Fizicheskaya khimiya rastvorov elektrolitov [Physical chemistry of electrolyte solutions]. Moscow: Izdatel'stvo inostrannoi literatury Publ., 1952, 628 p.
2. Bates R.G. Determination of pH. Theory and Practice. 2nd ed. New York: John Wiley and Sons, 1973, 398 p.
3. Robinson R.A., Stoks R.G. Rastvory ehlektrolitov [Electrolyte solutions]. Moscow: Izdatel'stvo inostrannoi literatury Publ., 1963, 646 p.
4. Rockwood A.L. Meaning and Measurability of Single-Ion Activities, the Thermodynamic Foundations of pH, and the Gibbs Free Energy for the Transfer of Ions between Dissimilar Materials. Chem. Phys. Chem. 2015, vol. 16, no. 9, pp. 1978–1991. DOI: 10.1002/cphc.201500044
5. Holguín A.R., Delgado D.R., Martínez F., Marcus Y. Solution thermodynamics and preferential solvation of meloxicam in propylene glycol + water mixtures. J. Solution Chem. 2011, vol. 40, pp. 1987–1999.
6. Krishnamoorthy A.N., Zeman J., Holm C., ., Smiatek J. Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions. Physical Chemistry Chemical Physics. 2016, vol. 18, no. 45, pp. 31312–31322. DOI: 10.1039/C6CP05909K
7. Roda G., Dallanoce C., Grazioso G., Liberti V., De Amici M. Determination of Acid Dissociation Constants of Compounds Active at Neuronal Nicotinic Acetylcholine Receptors by Means of Electrophoretic and Potentiometric Techniques. Analytical Sciences. 2010, vol. 26, issue 1, pp. 51–54. DOI: https://doi.org/10.2116/analsci.26.51
8. Izmailov N.A. Ehlektrokhimiya rastvorov [Electrochemistry of solutions]. Moscow: Khimiya Pub., 1976, 488 p.
9. Aleksandrov V.V. Kislotnost' nevodnykh rastvorov [Acidity of non-aqueous solutions]. Khar'kov: Vishcha shkola Publ., 1981, 152 p.
10. Krestov G.A. Termodinamika ionnykh protses-sov v rastvorakh. Leningrad: Khimiya Publ., 1984, 272 p.
11. Tanganov B.B., Alexeeva I.A. Model for Calculating the Activity Coefficients of Electrolytes in the 0 to 16 mol/L Range of Concentrations. Russian J. of Physical Chemistry A. 2016, vol. 90, Issue 4, pp. 792–795. DOI: 10.7868/S0044453716040300
12. Tanganov B.B. Modelling of ions mobility in plasmalike concept and transfer processes in electrolyte solutions. Journal of Chemistry and Chemical Engineering. 2013, vol. 7, no. 8, pp. 711–724.
13. Lysova S.S., Skripnikova T.A., Zevatskii Yu.E. Algorithm for calculating the dissociation constants of weak electrolytes and ampholites in water solutions. Russian Journal of Physical Chemistry A. 2017, vol. 91, issue 12, pp. 2366–2369.
14. Tanganov B.B., Alekseeva I.A. A Method for Calculationg the Acid-Base Equilibria in Aqueous and Nonaqueous Electrolite Solutions. Russian Journal of Physical Chemistry A. 2017, vol. 91, issue 6, pp. 1149–1151. DOI: 10.1134/S0036024417060243
15. Tanganov B.B. The method of multi-level modeling in the evaluation of physico-hemical parameters of solvents. IV. Isothermal changes of thermodynamic functions from an ideal state. Mezhdunarodnyi zhurnal eksperimental'nogo obrazovaniya. 2015, no. 11–3, pp. 433–436. (In Russian)
Review
For citations:
Tanganov B.B., Zayakhanov M.E., Bituyev A.V. Methods for estimating the activity coefficients of strong acids across the concentration range from 1 to 10 mol/l. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(2):232-238. (In Russ.) https://doi.org/10.21285/2227-2925-2019-9-2-232-238