Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Lyophilisation of inactivated vaccines

https://doi.org/10.21285/2227-2925-2019-9-3-403-419

Abstract

A review of national and foreign scientific and patent literature, as well as the regulatory documents on the lyophilisation of inactivated vaccines, is presented. According to the State Register of Medicinal Products, all inactivated vaccines produced in dried form in the Russian Federation are obtained by freeze-drying. The excipients (drying media) used in the freeze-drying of vaccines are evaluated in terms of their qualitative and quantitative composition. A review of the features of the main stages of freeze-drying processes, e.g. freezing, sublimation (primary drying) and desorption (secondary drying) is given alongside an analysis of their distinctive features. The information on inactivated vaccines in the lyophilisate form registered in the Russian Federation is systematised. Available information on inactivated vaccines produced in the United States in the form of a lyophilisate is also presented. An analysis of the literature data reveals a significant variety of excipients used in lyophilisation. The influence of the sealing method of consumer packaging on the quality of preparations is considered, i.e. either in the oxygen or inert gas media or under vacuum. It is noted that the entire range of vaccines produced and registered in Russia is sealed under vacuum or in inert gas (i.e. in the absence of oxygen). A number of examples are cited to demonstrate the effect of technological freeze -drying process parameters on the quality of the preparations. It is shown that the preservation of a vaccine's properties during freeze-drying is influenced by a number of parameters, including the freezing rate and the temperature-time parameters of the primary drying and desorption processes. It is established that the correct selection of the qualitative and quantitative characteristics of the drying medium contributes to the preservation of the target properties of lyophilised preparations. The analysis of literature data allows the influence of the parameters described in the review to be considered when developing the technology for the production of immunobiological preparations for the prevention and treatment of infectious diseases.

About the Authors

A. V. Komissarov
Russian Research Anti-Plague Institute «Microbe»; N.I. Vavilov Saratov State Agrarian University
Russian Federation

Dr.Sci. (Biology), Associate Professor, Chief Researcher;

Professor, Microbiology, Biotechnology, and Chemistry Department,

Saratov



D. N. Bibikov
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

Research Assistant,

Saratov



O. A. Volokh
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

Ph.D. (Biology), Head of the Department,

Saratov



S. A. Badarin
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

Researcher,

Saratov



N. V. Sinitsyna
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

Researcher,

Saratov



N. I. Kostyleva
Russian Research Anti-Plague Institute «Microbe»
Russian Federation

Researcher,

Saratov



A. K. Nikiforov
Russian Research Anti-Plague Institute «Microbe»; N.I. Vavilov Saratov State Agrarian University
Russian Federation

Dr. Sci. (Biology), Associate Professor, Deputy Director;

Professor, Microbiology, Biotechnology, and Chemistry Department,

Saratov



References

1. Plotkin S.A., Springer N.Y. History of Vaccine Development. New York: Springer, 2011, 364 p. DOI: 10.1007/978-1-4419-1339-5_6

2. Salmon D.E., Smith T. On a new method of producing immunity from contagious diseases. Proceedings of the Biological Society of Washington. 1884–1886, vol. 3, pp. 29–33. 3. Varshney D., Singh M. Lyophilized Biologics and Vaccines. Modality-Based Approaches. New York: Springer, 2015, 401 р. DOI: 10.1007/978-1-4939-2383-0

3. Pikal M.J. Freeze-drying of proteins. Part I: process design. BioPharm. 1990, vol. 3, pp. 18–28.

4. Gusarov D.A. Freeze-drying of biopharmaceutical proteins (mini-review). Biofarmatsevticheskii zhurnal. 2010, vol. 2, no. 5, pp. 3–7. (In Russian)

5. Wang W. Lyophilization and development of solid protein pharmaceuticals. International journal of pharmaceutics. 2000, vol. 203, issue 1-2, pp. 1–60. https://doi.org/10.1016/S0378-5173(00)00423-3

6. Pikal M.J., Rambhatla S., Ramot R. The Impact of the Freezing Stage in Lyophilization: Effects of the Ice Nucleation Temperature on Process Design and Product Quality. Journal of the American Pharmacists Association. 2002, vol. 5, pp. 48–53.

7. Tang X., Pikal M.J. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharmaceutical Research. 2004, vol. 21, issue 2, pp. 191–200. 9. Franks F., Auffret T. Freeze-Drying of Pharmaceuticals and Biopharmaceuticals. Principles and Practice. Cambridge, UK: RSCPublishing, 2007, 206 р.

8. Searles J.A., Carpenter J.F., Randolph T.W. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. Journal of Pharmaceutical Sciences. 2001, vol. 90, issue 7, pp. 860–871. https://doi.org/10.1002/jps.1039

9. Cochran T., Nail S.L. Ice nucleation temperature influences recovery of activity of a model protein after freeze drying. Journal of Pharmaceutical Sciences. 2009, vol. 98, issue 9, pp. 3495–3498. DOI: 10.1002/jps.21815

10. Heller M.C., Carpenter J.F., Randolph T.W. Protein formulation and lyophilization cycle design: prevention of damage due to freezeconcentration induced phase separation. Biotechnology and Bioengineering. 1999, vol. 63, issue 2, pp. 166–174. DOI: 10.1002/(SICI)1097-0290(19990420)63:23.0.CO;2-H

11. Franks F. Freeze-drying of bioproducts: putting principles into practice. European Journal of Pharmaceutics and Biopharmaceutics. 1998, vol. 45, issue 3, pp. 221–229. https://doi.org/10.1016/S0939-6411(98)00004-6

12. Collier L.H. The development of a stable smallpox vaccine. Epidemiology and Infection. 1955, vol. 53, issue 1, pp. 76–101. htts://doi.org/10.1017/S002217240000053X

13. Constantino H.R., Pikal M.J. Lyophilization of Biopharmaceuticals. Arlington, VA, USA: AAPS Press, 2004, 686 p.

14. Nezhuta A.A., Serbis E.S., Didenko A.A., Golovleva S.I. Certain aspects of biological material freeze-drying. Farmatsevticheskie tekhnologii i upakovka. 2012, no. 4, pp. 38–40. (In Russian)

15. Nezhuta A.A., Serbis E.S. Development of scientifically-substantiated modes of freeze-drying of biological preparations. Biotekhnologiya. 2001, no. 6, pp. 59–67. (In Russian)

16. Mogilyuk V. Aspects of lyophilized drying of aqueous solutions. Farmatsevti-cheskaya otrasl'. 2014, no. 5 (46), pp. 46–53. (In Russian)

17. Komissarov A.V., Bibikov D.N., Volokh O.A., Badarin S.A., Sinitsyna N.V., Kostyleva N.I., Germanchuk V.G., Nikiforov A.K. Lyophilization of live vaccines. Vestnik biotekhnologii i fiziko-khimicheskoi biologii imeni Yu.A. Ovchinnikova. 2018, vol. 14, no. 3, pp. 56–73. (In Russian)

18. Rey L.R. Glimpses into the fundamental aspects of freeze drying. In: Development in Biological Standardization. Ed. by V.J. Cabasso, R.H. Regamey. Basel: S. Krager, 1977, vol. 16, pp. 20–27.

19. Kuzina S.M., Kulikova I.L., Khorosheva T.V., Mordvintseva E.Yu. Liofilizi-rovannaya antigerpeticheskaya vaktsina [Lyophilized antiherpetic vaccine]. Patent of RF, no. 2002115810. A61K 39/29, 2004.

20. Gavrilova M.A., Shkuratova O.V., Mal'tseva G.G., Bystritskii L.D., Ruzavina E.V. «Ospavir» – novel preparation for primary vaccination against smallpox applying two-stage method. Sibirskii meditsinskii zhurnal. 2009, no. 2, issue 2, pp. 63–67. (In Russian)

21. Bystritskii L.D., Stavitskaya N.Kh., Mal'tseva G.G., Perekrest V.V., Vasil'eva T.A., Sharova O.I., Gavrilova M.A. Sposob polucheniya vaktsiny ospennoi inaktivirovannoi sukhoi «Ospavir» [Method for the production of inactivated dry smallpox vaccine «Ospavir»]. Patent of RF no. 2259214. A61K 39/285, 2005.

22. Dyatlov I.A., Somov A.N., Dunaitsev I.A., Kopylov P.Kh., Ivanov S.A., Borzilov A.I., Anisimov A.P., Khramov M.V. Rekombinantnyi vaktsinnyi preparat prolongirovannogo deistviya dlya profilaktiki chumy u mlekopitayushchikh i cheloveka i sposob ego polucheniya [Recombinant sustained-action vaccine preparation for plague prophylaxis in mammals and humans and method for its production]. Patent of RF, no. 2671525. A61K 39/02, 2018.

23. Komissarov A.V., Kochkalova N.E., Sinitsyna N.V., Badarin S.A., Kostyleva N.I., Volokh O.A., Klokova O.D., Nikiforov A.K. Studies of the freezedrying of cholera chemical vaccine immunogens. Problemy osobo opasnykh infektsii. 2016, no. 1, pp. 90–93. (In Russian). DOI: 10.21055/0370-1069- 2016-1-90-93

24. Belyakova O.V., Nikolaeva A.M., Sosnina O.Yu., Drozhzhachikh O.S. Development and standardization of a freeze-dried form of a vaccine for the prevention of infections caused by Haemophilus influenzae type B. Permskii meditsinskii zhurnal. 2014, vol. XXXI, no. 2, pp. 102–108. (In Russian)

25. Semakova A.P., Kudryavtseva O.M., Popova P.Yu., Komissarov A.V., Mikshis N.I. Stabilization by lyophilization of immunogenic antigens of Bacillus anthracis as part of a prototype of a recombinant anthrax vaccine. Biotekhnologiya. 2017, vol. 33, no. 3, pp. 57–65. (In Russian). DOI: 10.21519/0234-2758-2017-33-3-57-65

26. Mikshis N.I., Semakova A.P., Popova P.Yu., Kudryavtseva O.M., Bugorkova S.A., Komissarov A.V., Germanchuk V.G., Popov Yu.A. Determination of compliance of the prototype recombinant anthrax vaccine with the requirements applicable to immunobiological preparations. Infektsiya i immunitet. 2018, vol. 8, no. 3, pp. 388–392. (In Russian). https://doi.org/10.15789/2220-7619-2018-3-388-392

27. Kozhukhov V.V., Menovshchikov V.A., Pimenov E.V., Seroglazov V.V., Yudnikov V.A. Sposob polucheniya sukhoi kombinirovannoi sibireyazvennoi vaktsiny [Method for the production of dry combined anthrax vaccine]. Patent of RF, no. 2181294. A61K 39/07, 2002.

28. Kazzaz D., Kontorni M., O’Kheigan D., Singkh M., Ugozzoli M. Nabor dlya polucheniya immunogennoi kompozitsii protiv Neisseria meningitidis serologicheskoi gruppy b [The panel for production of immunogenic composition against Neisseria meningitides serological group B]. Patent of RF, no. 2498815. A61K 39/095, 2013.

29. Amorij J-P., Saluja V., Petersen A.H., Hinrichs W.L.J., Huckriede A., Frijlink H.W. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine. 2007, vol. 25, no. 52, pp. 8707–8717. DOI: 10.1016/j.vaccine. 2007.10.035

30. Amorij J-P., Meulenaar J., Hinrichs W.L.J., Stegmann T., Huckriede A., Coenen F., Frijlink H.W. Rational design of an influenza subunit vaccine powder with sugar-glass-technology: Preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine. 2007, vol. 25, no. 35, pp. 6447–6457. DOI: 10.1016/j.vaccine.2007.06.054

31. Amorij J-P., Meulenaar J., Hinrichs W.L.J., Stegmann T., Huckriede A., Coenen F., Frijlink H.W. Inulin sugar glasses preserve the structural integrity and biological activity of influenza virosomes during freeze-drying and storage. European Journal of Pharmaceutical Sciences. 2007, vol. 32, no. 1, pp. 33–44. DOI: 10.1016/j.ejps.2007.05.112

32. Jiang G., Joshi S.B., Peek L.J., Brandau D.T., Huang J., Ferriter M.S., Woodley W.D., Ford B.M., Mar K.D., Mikszta J.A., Hwang C.R., Ulrich R., Harvey N.G., Middaugh C.R., Sullivan V.J. Anthrax vaccine powder formulations for nasal mucosal delivery. Journal of Pharmaceutical Sciences. 2006, vol. 95, no. 1, pp. 80–96. DOI: 10.1002/jps.20484

33. Czyz M., Dembczynski R., Marecik R., WojasTurek J., Milczarek M., Pajtasz-Piasecka E., Wietrzyk J., Pniewski T. Freeze-Drying of Plant Tissue Containing HBV Surface Antigen for the Oral Vaccine against Hepatitis B. BioMed Research International. 2014. Article ID 485689. DOI: 10.1155/2014/485689

34. Ohtomo N., Mizuno K., Hamada F., Mizokami H. Lyophilized hepatitis B vaccine. United States Patent, no. 4710378. A61K 39/00, 1987.

35. Kraan H., van Herpen P., Kersten G., Amorij J.-P. Development of Thermostable Lyophilized Inactivated Polio Vaccine. Pharmaceutical Research. 2014, vol. 31, issue 1, pp. 2618–2629. DOI: 10.1007/s11095-014-1359-6

36. Chisholm C.F., Kang T.J., Lehrer A., Donini O., Randolph T.W. Thermostable Ebola virus vaccine formulations lyophilized in the presence of aluminum hydroxide. European Journal of Pharmaceutics and Biopharmaceutics. 2019, vol. 136, pp. 213–220. DOI: 10.1016/j.ejpb.2019.01.019

37. Hassett K.J., Vance D.J., Jain N.K., Sahni N., Rabia L.A., Cousins M.C., Joshi S., Volkin D.B., Middaugh C.R., Mantis N.J., J.F. Carpenter, Randolph T.W. Glassy-State Stabilization of a Dominant Negative Inhibitor Anthrax Vaccine Containing Aluminum Hydroxide and Glycopyranoside Lipid A Adjuvants. Journal of Pharmaceutical Sciences. 2015, vol. 104, pp. 627–639. DOI: 10.1002/jps.24295

38. Hassett K.J., Meinerz N.M., Semmelmann F., Cousins M.C., Garcea R.L., Randolph T.W. Development of a highly thermostable, adjuvanted human papillomavirus vaccine. European Journal of Pharmaceutics and Biopharmaceutics. 2015, vol. 94, pp. 220–228. DOI: 10.1016/j.ejpb.2015.05.009

39. Gill D., Sharma S. Novel multivalent polysaccharide – protein conjugate vaccine composition and formulation thereof. WO/2019/003238. A61K 47/36, 2019.

40. Chintala R.V., Bhambhani A. HPV vaccine formulations comprising aluminum adjuvant and methods of producing same. United States Patent, no. US20170157238. A61K 39/12, 2017.

41. Huiying S., Xiubao R. Lyophilized inactivated Japanese encephalitis vaccine. Patent of China, no. CN102631672. A61K 39/12, 2014.

42. Watkinson A., Duchars M. Stable vaccine compositions and methods of use. WO/2010/084298. A61K 39/07, 2010.

43. Yoichiro K., Nobuya O. Herpes simplex virus subunit vaccine. Patent of Canada, 1244766. A61K 39/245, 1988.


Review

For citations:


Komissarov A.V., Bibikov D.N., Volokh O.A., Badarin S.A., Sinitsyna N.V., Kostyleva N.I., Nikiforov A.K. Lyophilisation of inactivated vaccines. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(3):403-419. https://doi.org/10.21285/2227-2925-2019-9-3-403-419

Views: 839


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)