Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Study of the influence of Medusomyces gisevii Sa-12 inoculum dosage on bacterial cellulose yield and degree of polymerisation

https://doi.org/10.21285/2227-2925-2019-9-3-420-429

Abstract

Bacterial cellulose (BC) consists in a highly crystalline nanopolymer whose potential for application in both traditional and new industries is significant due to its unique physico-mechanical properties. In scaled BC biosynthesis processes, the use of microorganism consortia characterised by their adaptability and synergistic effects when coordinating substrate consumption appears to be promising. In the present work, the effect of inoculum dosage on BC yield during Medusomyces gisevii Sa-12 symbiotic culture on a glucose medium under optimal conditions is studied in detail. Two available methods were chosen for quality control of the BC: scanning electron microscopy, presenting an express method for confirming the origin of cellulose; and the degree of polymerisation in terms of a common method for controlling the quality of cellulose. Four experiments were carried out for the producer introduction with a dosage of 5, 10, 15 and 20% vol.. Use of the Medusomyces gisevii Sa-12 symbiotic culture provided the greatest number of acetic acid bacteria and the highest BC yield (7.5–8.0%) with an inoculum dosage of 10–20% vol. At the same time, an inoculum dosage of 20% vol. allowed the culture time to be halved, while an inoculum dosage of 5% vol. appears to be insufficient. All inoculum dosage variants were determined to provide the same three-dimensional cross-linked microfibrillar structure of BC samples. The degree of polymerisation (DP) of BC samples was first established to depend on the dosage of the inoculum and the duration of BC biosynthesis. Thus, the biosynthesis process can be controlled using such a simple parameter as inoculum dosage and BCs can be synthesised directionally with a given DP. The inoculum dosage of 10% vol. was established as providing the highest possible DP of BC (value of 5000), decreasing slightly during prolonged culture.

About the Authors

E. A. Skiba
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Russian Federation

Ph.D. (Engineering), Associate Professor, Senior Researcher, Laboratory of Bioconversion,

Biysk



O. V. Baibakova
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Russian Federation

Ph.D. (Engineering), Junior Researcher, Laboratory of Bioconversion,

Biysk



E. K. Gladysheva
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Russian Federation

Ph.D. (Engineering), Researcher, Laboratory of Bioconversion,

Biysk



V. V. Budaeva
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Russian Federation

Ph.D. (Chemistry), Associate Professor, Head of Bioconversion Laboratory,

Biysk



References

1. Campano C., Balea A., Blanco A., Negro C. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose. 2016, vol. 23, pp. 57–91. https://doi.org/10.1007/s10570-015-0802-0

2. Gama M., Dourado F., Bielecki S. Bacterial nanocellulose. From Biotechnology to Bio-Economy. Amsterdam: Elsevier, 2016, 240 p.

3. Revin V.V., Klenova N.A., Belousova Z.P., Red’kin N.A., Tukmakov K.N., Markova Yu.A., Sosova E.Yu. Production and studying properties of composites based on bacterial cellulose and poly-N, N-dimethyl-3,4-methylenpirrolidine chloride. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. 2017, vol. 7, no. 1, pp. 103–111. (In Russian). DOI: 10.212 85/2227-2925-2017-7-1-103-111

4. Barud H.G., Barud H.S., Gutierrez J., Silva R.R., Tercjak A., Lustri W.R., Ribeiro S. JL. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers. 2016, vol. 153, pp. 406–420. https://doi.org/10.1016/j.carbpol.2016.07.059

5. Mohite B.V., Koli S.H., Patil S.V. Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications. In: Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Ed. by M. Mondal. Springer, Cham. 2019, pp. 1255–1276. https://doi.org/10.1007/978-3-319-77830-3_2

6. Suresh S. Biosynthesis and Assemblage of Extracellular Cellulose by Bacteria. In: Handbook of Environmental Materials Management. Ed. by C. Hussain. Springer, Cham. 2018, pp. 1–43. https://doi.org/10.1007/978-3-319-58538-3_71-1

7. Shidlovskiy I.P., Shumilova A.A., Shishatskaya E.I., Volova T.G. Properties of Bacterial Cellulose Composites with Silver Nanoparticles. Biophysics. 2018, vol. 63, no. 4, pp. 519-525. https://doi.org/10.1134/S0006350918040188

8. Rogozhin V.V., Rogozhin Yu.V. Influence of anaerobic conditions on productivity of Medusomyces gisevii. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. 2018, vol. 8, no. 1, pp. 59–66. (In Russian). DOI: 10.21285/2227-2925-2018-8-1-59-66

9. Gladysheva E.K., Skiba E.A., Zolotukhin V.N., Sakovich G. V. Study of the Conditions for the Biosynthesis of Bacterial Cellulose by the Producer Medusomyces gisevii Sa-12. Applied Biochemistry and Microbiology. 2018, vol. 54, no. 2, pp. 179–187. DOI: 10.1134/S0003683818020035

10. Goh W.N., Rosma A., Kaur B., Fazilah A., Karim A.A, Rajeev B. Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (kombucha). II. International Food Research Journal. 2012, vol. 19 (1), pp. 153–158.

11. Krystynowicz A., Czaja W., Wiktorowska-Jezierska A., Gonc M., Gonsalves-Mis kiewicz M., Turkiewicz M., Bielecki S. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology. 2002, vol. 29, no. 4, pp. 189–195. https://doi.org/10.1038/sj.jim.7000303

12. Römling U., Galperin M.Y. Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. Trends in Microbiology. 2015, vol. 23, pp. 545–557. DOI: 10.1016/j.tim.2015.05.005

13. Borzani W., Souza S.J. Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid media. Biotechnology Letters. 1995, vol. 17, no. 11, pp. 1271–1272. https://doi.org/10.1007/BF00128400

14. Cheng K.C., Catchmark J.M., Demirci A. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. Journal of Biological Engineering. 2009, vol. 3, pp. 12. https://doi.org/10.1186/1754-1611-3-12

15. Stepanov N., Efremenko E. "Deceived" Concentrated Immobilized Cells as Biocatalyst for Intensive Bacterial Cellulose Production from Various Sources. Catalysts. 2018, vol. 8, no. 1, pp. 33. https://doi.org/10.3390/catal8010033

16. Valls C., Pastor F.I.J., Roncero M.B., Vidal T., Diaz P., Martínez J., Valenzuela S.V. Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters. Biotechnology for Biofuels. 2019, vol. 12, pp. 161. https://doi.org/10.1186/s13068-019-1502-z

17. Zugenmaier P. Crystalline Cellulose and Derivatives: Characterization and Structures, Springer Series in Wood Science. Springer-Verlag Berlin Heidleberg, 2008, 285 p.

18. Shi Q.S., Feng J., Li W.R., Zhou G., Chen A.M., Ouyang Y.S., Chen Y.B. Effect of different conditions on the average degree of polymerization of bacterial cellulose produced by Gluconacetobacter Intermedius BC-41. Cellulose Chemistry and Technology. 2013, vol. 47, pp. 503–508.

19. Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum: II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Journal of Biochemistry. 1954, vol. 58, no. 2, pp. 345–352.

20. Yang X.Y., Huang C., Guo H.J., Xiong L., Li Y.Y., Zhang H.R., Chen X.D. Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. Journal of Applied Microbiology. 2013, vol. 115, no. 4, pp. 995–1002. http://dx.doi.org/10.1111/jam.12255

21. Mohammadkazemi F., Doosthoseini K., Azin M. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734). Cellulose chemistry and technology. 2015, vol. 49, no. 5-6, pp. 455–462.

22. Gladysheva E.K., Skiba E.A. Biosynthesis of bacterial cellulose on enzymatic hydrolyzate of oat hull pulp. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. 2017, vol. 7, no. 1, pp. 141–147. (In Russian). DOI: 10.21285/2227-2925-2017-7-1-141-147

23. Bassem B.H., Ragauskas A.J. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioproducts and Biorefining. 2011, vol. 5, pp. 215–225. DOI: 10.1002/bbb.269

24. Kashcheyeva E.I., Gladysheva E.K., Skiba E.A., Budaeva V.V. A study of properties and enzymatic hydrolysis of bacterial cellulose. Cellulose. 2019, vol. 26, issue 4, pp. 2255–2265. DOI: 10.1007/s10570-018-02242-7

25. Yurkevich D.I., Kutyshenko V.P. Meduzomitset (Chainyi grib): nauchnaya istoriya, sostav, osbennosti fiziologii i metabolizma. Biofizika. 2002, no. 6, pp. 1116–1129. (in Russian).

26. Brandes R., de Souza L., Vanin D.V.F., Carminatti C.A., Oliveira E.M., Antônio R.V., Recouvreux D.O.S. Influence of the Processing Parameters on the Characteristics of Spherical Bacterial Cellulose. Fibers and Polymers. 2018, vol. 19, no. 2, pp. 297–306. DOI: 10.1007/s12221-018-7679-5

27. Abdelraof M., Hasanin M.S., El -Saied H. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydrate Polymers. 2019, voI. 211, pp. 75–83. https://doi.org/10.1016/j.carbpol.2019.01.095

28. Rangaswamy B.E., Vanitha K.P., Hungund B.S. Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit. International Journal of Polymer Science. 2015. http://dx.doi.org/10.1155/2015/280784

29. Huang C., Yang X.Y., Xiong L., Guo H.J., Luo J., Wang B., Zhang H.R., Lin X.Q., Chen X.D. Utilization of Corncob Acid Hydrolysate for Bacterial Celulose Production by Gluconacetobacter xylinus. Applied Biochemistry and Biotechnology. 2015, vol. 175, no. 3, pp. 1678–1688. https://doi.org/10.1007/s120 10-014-1407-z

30. Pacheco G., Nogueira C.R., Meneguin A.B., Trovatti E., Silva M.C.C., Machado R.T.A., Ribeiro S.J.L., Filho E.C.S., Barud H.S. Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Industrial Crops and Products. 2017, vol. 107, pp. 13–19. http://dx.doi.org/10.1016/j.indcrop.2017.05.026

31. Hassan E.A., Abdelhady H.M., El-Salam S.S.A., Abdullah S.M. The characterization of bacterial cellulose produced by Acetobacter xylinum and Komgataeibacter saccharovorans under optimized fermentation conditions. British Microbiology Research Journal. 2015, vol. 9, no. 3, pp. 1–13. DOI: 10.9734/BMRJ/2015/18223

32. Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolaou S., Paloukis F., Alves V., Koutinas A. Bacterial сellulose production from industrial waste and by-product streams. International Journal of Molecular Sciences. 2015, vol. 16, no. 7, pp. 14832–14849. https://doi.org/10.1007/s10570-019-02307-1

33. Cellulose and Cellulose Derivatives. Parts ӀV-V. Ed. by N.M. Bikales, L. Segal New York: WileyIntersciense, 1971, 510 p.


Review

For citations:


Skiba E.A., Baibakova O.V., Gladysheva E.K., Budaeva V.V. Study of the influence of Medusomyces gisevii Sa-12 inoculum dosage on bacterial cellulose yield and degree of polymerisation. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(3):420-429. https://doi.org/10.21285/2227-2925-2019-9-3-420-429

Views: 369


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)