Comparative assessment of two calculation methods for change dynamics in the major fatty acid content of Triticum aestivum L. wheat calli under the action of low-intensity laser radiation
https://doi.org/10.21285/2227-2925-2019-9-3-439-446
Abstract
About the Authors
L. V. DudarevaRussian Federation
Ph.D. (Biology), Leading Researcher, Head of Laboratory, Physical and Chemical Research Methods Laboratory,
Irkutsk
V. N. Shmakov
Russian Federation
Ph.D. (Biology), Senior Researcher, Plant Genetic Engineering Laboratory,
Irkutsk
E. G. Rudikovskaya
Russian Federation
Ph.D. (Biology), Senior Researcher, Laboratory of Physiological and Biochemical Adaptation of Plants,
Irkutsk
References
1. Karu T.I. Cellular mechanisms of low-intensity laser therapy. Uspekhi sovremennoi biologii. 2001, vol. 121, no. 1, pp. 110–120. (In Russian)
2. Karu T.I., Kalendo G.S., Letokhov V.S., Lobko V.V. Biostimulation of HeLa cells by low intensity visible light. Nuovo Cimento D. 1982, vol. 1, issue 6, pp. 828–840. DOI: 10.1007/bf02451072
3. Freitas L.F., Hamblin M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of selected topics in quantum electronics. 2016, vol. 22, issue 3, pp. 348–364. DOI: 10.1109/JSTQE.2016.2561201
4. Moskvin S.V. Low-Level Laser Therapy in Russia: History, Science and Practice. Journal of Lasers in Medical Sciences. 2017, vol. 8, issue 2, pp. 56–65. DOI: 10.15171/jlms.2017.11
5. Hernandez A.C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R. Laser in agriculture. International Agrophysics. 2010, vol. 24, issue 4, pp. 407–422.
6. Perveen R., Jamil Y., Ashraf M., Ali Q., Iqbal M., Ahmad M.R. He-Ne laser-induced improvement in biochemical, physiological, growth and yield characteristics in sunflower (Helianthus annuus L.). Photochemistry and Photobiology. 2011, vol. 87, issue 6, pp. 1453–1463.
7. Krawiec M., Dziwulska-Hunek A., Kornarzyński K. The use of physical factors for seed quality improvement of horticultural plants. Journal of Horticultural Research. 2018, vol. 26, issue 2, pp. 81–94. DOI: 10.2478/johr-2018-0019
8. Swathy P.S., Rupal G., Prabhu V., Mahato K.K., Muthusamy A. In vitro culture responses, callus growth and organogenetic potential of brinjal (Solanum melongena L.) to He-Ne laser irradiation. Journal of Photochemistry and Photobiology B: Biology. 2017, vol. 174, pp. 333–341. DOI: 10.1016/j.jphotobiol.2017.08.017
9. Jimenez A.M.M., Cornejo S.L., Morales M.O. Effect of He-Ne laser irradiation and exposure to light emitting diodes on the photosynthetic pigment content of Capsicum annuum. Interciencia. 2018, vol. 43, issue 7, pp. 484–490.
10. Podleśny J., Stochmal A., Podleśna A., Misiak L. E. Effect of laser light treatment on some biochemical and physiological processes in seeds and seedlings of white lupine and faba bean. Plant Growth Regulation. 2012, vol. 67, issue 3, pp. 227–233. DOI: 10.1007/s10725-012-9681-7
11. Dudareva L.V., Rudikovskaya E.G., Shmakov V.N., Rudikovskii A.V., Salyaev R.K. Influence of low-intensity laser radiation on the dynamics of some phytohormones content in the callus tissues of wheat Triticum aestivum L. Laser Physics. 2017, vol. 27, no.5. DOI: https://doi.org/10.1088/1555-6611/aa658e
12. Dudareva L.V., Rudikovskaya E.G., Shmakov V.N. Effect of low-intensity radiation of a heliumneon laser on the fatty acid composition of wheat callus tissues (Triticum aestivum L.). Biologicheskie membrany. 2014, vol. 31, no. 5, pp. 364–370. (In Russian). DOI: 10.7868/S0233475514050041
13. Bligh E.C., Dyer W.J. A Rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 1959, vol. 37, pp. 911–917.
14. Christie W.W. Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. In: Advances in Lipid Methodology – Two; Ed. by W.W. Christie. Oily Press: Dundee, UK, 1993, pp. 69–111.
15. Los' D.A. Desaturazy zhirnykh kislot [Fatty acid desaturases]. Moscow: Nauchnyi mir Publ., 2014, 317 p.
16. Okazaki Y., Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. The Plant Journal. 2014, vol. 79, issue 4, pp. 584–596. DOI: 10.1111/tpj.12556
17. Makarenko S.P., Shmakov V.N., Dudareva L.V., Stolbikova A.V., Semenova N.V., Tret'yakova I.N., Konstantinov Yu.M. Fatty acid composition of total lipids of embryogenic and non-embryogenic larch callus lines. Fiziologiya rastenii. 2016, vol. 63, no. 2, pp. 267–274. (In Russian). DOI: 10.7868/S001533031602010X
18. Pyatygin S.S. Stress in plants: a physiological approach. Zhurnal obshchei biologii. 2008, vol. 69, no. 4, pp. 294–298. (In Russian)
19. Dobrzyn A., Ntambi J.M. The role of stearoylCoA desaturase in the control of metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2005, vol. 73, issue 1, pp. 35–41. DOI: 10.1016/j.plefa.2005.04.011
20. Salyaev R.K., Dudareva L.V., Lankevich S.V., Ekimova E.G., Sumtsova V.M. Effect of lowintensity laser radiation on the lipid peroxidation in wheat callus culture. Russian Journal of Plant Physiology. 2003, vol. 50, no. 4, pp. 498–500. DOI: 10.1023/A:1024720707041
Review
For citations:
Dudareva L.V., Shmakov V.N., Rudikovskaya E.G. Comparative assessment of two calculation methods for change dynamics in the major fatty acid content of Triticum aestivum L. wheat calli under the action of low-intensity laser radiation. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(3):439-446. https://doi.org/10.21285/2227-2925-2019-9-3-439-446