Preview

Proceedings of Universities. Applied Chemistry and Biotechnology

Advanced search

Physiological effects of triazole fungicides in plants

https://doi.org/10.21285/2227-2925-2019-9-3-461-476

Abstract

The integrated protection of plants from diseases, pests and weeds is an essential element of technologies for their cultivation. Contemporary crop research involves the widespread use of fungicides, which is important not only for increasing plant productivity, but also in order to obtain a high-quality crop. Under conditions of significant spread, diseases such as wheat fusarium head blight, loose smut of wheat and rye, rye spur and others not only reduce the productivity of crops, but also prevent the use of grain crops for human nutrition or animal feed purposes. In addition to plant protection, measures aimed at managing crops are of great importance in cultivation technology. This is ensured by various technological methods, including the use of a variety of chemicals, including stimulants and regulators of plant growth and development. In addition to their main target effect, many pesticides are known to cause additional effects on plants. This is expressed not only in varying degrees of phytotoxic manifestations, but also in stimulating and growth-regulating effects. Knowledge of the direction of these effects will allow for more competent application of chemical plant protection products, as well as for obtaining positive and avoiding negative effects. Many contemporary large companies working in the field of plant protection inform agrarians about possible additional effects of the preparation. In addition to practical application, studying the influence of the physiological effects of preparations helps agriculturalists to understand the formation mechanisms of plant resistance to stress. The review discusses the physiological and biochemical effects of triazole fungicidal preparations on plants. Their retardant effect, ability to increase the content of photosynthetic pigments and sugars, effects on respiration, changes in the composition of fatty acids, increased resistance of plants to temperature stresses, water deficiency, as well as chloride salinity and oxidative stress are also clarified. The review also includes the results of our own research on the effects of tebuconazole and tebuconazole-containing protectants on the mechanisms of cold and frost resistance of cereals.

About the Authors

T. P. Pobezhimova
Siberian Institute of Plant Physiology and Biochemistry SBRAS
Russian Federation

Dr. Sci. (Biology), Associate Professor, Principal research scientist,

Irkutsk



A. V. Korsukova
Siberian Institute of Plant Physiology and Biochemistry SBRAS
Russian Federation

Ph. D. Sci. (Biology), leading engineer,

Irkutsk



N. V. Dorofeev
Siberian Institute of Plant Physiology and Biochemistry SBRAS
Russian Federation

Ph. D. Sci. (Biology), Vice-Director,

Irkutsk



O. I. Grabelnych
Siberian Institute of Plant Physiology and Biochemistry SBRAS; Irkutsk State University
Russian Federation

Dr. Sci. (Biology), Associate Professor, Principal research scientist;

Professor,

Irkutsk



References

1. Hof H. Critical annotations to the use of azole antifungals for plant protection. Antimicrobial Agents and Chemotherapy. 2001, vol. 45, no. 11, pp. 2987–2990. DOI: 10.1128/AAC.45.11.2987-2990.2001

2. Popov S.Ya., Dorozhkina L.A., Kalinin V.A. Osnovy khimicheskoi zashchity rastenii [Fundamentals of chemical plants protection]. Moscow: Art-Lion Publ., 2003, 208 p.

3. Zinchenko V.K. Khimicheskaya zashchita rastenii: sredstva, tekhnologiya i ekologicheskaya bezopasnost' [Chemical protection of plants: tools, technology and environmental safety]. Moscow: KolosS Publ., 2005, 232 p.

4. Nemchenko V.V., Zargaryan N.Yu., Fomina N.Yu. Applicability of Fungicides in spring wheat. Zashchita i karantin rastenii. 2012, no. 10, pp. 47–49. (In Russian)

5. Nemchenko V.V., Kekalo A.Yu., Zargaryan N.Yu., Tsypysheva M.Yu. Seed dressing – first step to obtain a protected and productive agrocenosis. Zashchita i karantin rastenii. 2014, no. 3, pp. 22–24. (In Russian)

6. Grishechkina L.D., Dolzhenko V.I., Silaev A.I., Zdrozhevskaya S.D., Korenyuk E.F., Milyutenkova T.I. Fludioxonils Application for Spring Wheat Protection Against Seed and Soil Infection. Vestnik zashchity rastenii. 2015, vol. 1, no. 83, pp. 31–35. (In Russian)

7. Tietjen K. Contribution of plant responses to efficacy of fungicides – A respective. In: Modern Fungicides and Antifungal Compounds. Ed. by H.B. Deising, B. Fraaije, A. Mehl, E.C. Oerke, H. Sierotzki, G. Stammler. Deutsche Phytomedizinische Gesellschaft, Braunschweig, 2017, vol. VIII, pp. 33–50.

8. Mabvongwe O., Manenji B.T., Gwazane M., Chandiposha M. The effect of paclobutrazol application time and variety on growth, yield, and quality of potato (Solanum tuberosum L.). Advances in Agriculture. 2016, vol. 2016, ID 1585463, 5 p. http://dx.doi.org/10.1155/2016/1585463

9. Byamukama E., Ali S., Kleinjan J., Yabwalo D. N., Graham Ch., Caffe-Treml M., Mueller N. D., Ricrertsen J., Berzonsky W.A. Winter wheat grain yield response to fungicide application is influenced by cultivar and rainfall. Plant Pathology Journal. 2019, vol. 35, no. 1, pp. 63–70. https://doi.org/10.5423/ PPJ.OA.04.2018.0056

10. Haughan P.A., Lenton J.R., Goad L.J. Sterol requirements and paclobutrazol inhibition of a celery cell culture. Phytochemistry. 1988, vol. 27, no. 8, pp. 2491–2500.

11. Kende H., Zeevaart J. The five “classical” plant hormones. The Plant Cell. 1997, vol. 9, no. 7, pp. 1197–1210. DOI: 10.1105/tpc.1197

12. Yang D., Wang N., Yan X., Shi J., Zhang M., Wang Sh., Yuan H. Microencapsulation of seedcoating tebuconazole and its effects on physiology and biochemistry of maize seedlings. Colloids and Surfaces B: Biointerfaces. 2014, vol. 114, pp. 241–246. http://dx.doi.org/10.1016/j.colsurfb.2013.10.014

13. Yang L., Yang D., Yan X., Cui L., Wang Z., Yuan H. The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation. Scientific Reports. 2016, vol. 6, pp. 35447. DOI: 10.1038/srep3544

14. Özmen A.D., Özdemіr F., Türkan I. Effect of paclobutrazol on response of two barley cultivars to salt stress. Biologia Plantarum. 2003, vol. 46, no. 2, pp. 263–268.

15. Gopi R., Sridharan R., Somasundaram R., Alagulakshmanan G.M. Growth and photosynthetic characteristics as affected by triazoles in Amorphophallus campanulatus Blume. Gen. Appl. Plant Physiology. 2005, vol. 31, no. 3-4, pp. 171–180.

16. Bora K.K., Ganesh R., Mathur S.R. Paclobutrazol delayed dark-induced senescence of mung bean leaves. Biologia (Bratislava). 2007, vol. 62, no. 2, pp. 185–188, Section Botany. DOI: 10.2478/s11756-007-0027-2

17. Kur'yata V.G., Khodanitskaya E.A. Influence of chlormequat-chloride on the formation of photosynthetic apparatus and productivity of oil flax in the right bank of forest-steppe of Ukraine. Zernobobovye i krupyanye kul'tury. 2013, vol. 4, no. 8, pp. 88–93. (In Russian)

18. Rogach V.V., Poprotska I.V., Kuryata V.G. Effect of gibberellin and retardants on morphogenesis, photosynthetic apparatus and productivity of the potato. Visnyk of Dnipropetrovsk University. Ser. Biology, Ecology. 2016, vol. 24, no. 2, pp. 416–420. (In Ukrainian). DOI: 10.15421/011656

19. Wang C.Y. Modification of chilling susceptibility in seedlings of cucumber and zucchini squash by the bioregulator paclobutrazol (PP333). Scientia Horticulturae. 1985, vol. 26, no. 4, pp. 293–298.

20. Fletcher R.A., Hofstra G. Improvement of uniconazole-induced protection in wheat seedlings. Journal of Plant Growth Regulation. 1990, vol. 9, pp. 207–212.

21. Kraus T.E., Fletcher R.A. Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved? Plant and Cell Physiology.1994, vol. 35, no. 1, pp. 45–52.

22. Kraus T.E., Pauls K.P., Fletcher R.A. Paclobutrazol- and hardening-induced thermotolerance of wheat: are heat shock proteins involved? Plant and Cell Physiology. 1995, vol. 36, no. 1, pp. 59–67.

23. Kraus T.E., Fletcher R.A., Evans R.C., Pauls K.P. Paclobutrazol enhances tolerance to increased levels of UV-B radiation in soybean (Glycine max) seedlings. Canadian Journal of Botany. 1995, vol. 73, no. 6, pp. 797–806. https://doi.org/10.1139/b95-088

24. Webb J.A., Fletcher R.A. Paclobutrazol protects wheat seedlings from injury due to waterlogging. Plant Growth Regulation. 1996, vol. 18, pp. 201–206.

25. Gilley A., Fletcher R.A. Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings. Journal of Plant Growth Regulation. 1997, vol. 21, no. 3, pp. 169–175.

26. Prusakova L.D., Chizhova S.I. Application of triazole derivatives in plant cultivation. Agrokhimiya. 1998, no. 10, pp. 37–44. (In Russian)

27. Sopher C.R., Król M., Huner N.P.A., Moore A.E., Fletcher R.A. Chloroplastic changes associated with paclobutrazol-induced stress protection in maize seedlings. Canadian Journal of Botany. 1999, vol. 77, no. 2, pp. 279–290. https://doi.org/10.1139/b98-236

28. Lin K.-H., Pai F.-H., Hwang S.-Y., Lo H.-F. Pre-treating paclobutrazol enhanced chilling tolerance of sweet potato. Plant Growth Regulation. 2006, vol. 49, pp. 249–262.

29. Soumya P.R., Kumar P., Pal M. Paclobutrazol: a novel plant growth regulator and multi-stress ameliorant. Indian Journal of Plant Physiology. 2017, vol. 22, no.3, pp. 267–278. DOI 10.1007/s40502-017-0316-x

30. Sankhla N., Upadhyaya A., Davis T.D., Sankla D.D. Hydrogen peroxide-scavenging enzymes and antioxidants in Echinochloa frumentacea as affected by triazole growth regulators. Plant Growth Regulation. 1992, vol. 11, pp. 441–443.

31. Safina-Ostashevskaya G.F., Gordon L.Kh. Effect of fungicides on respiratory gas exchange of wheat roots. Fiziologiya rastenii. 1984, vol. 31, no. 5, pp. 896–901. (In Russian)

32. Korsukova A.V., Borovik O.A., Grabelnych O.I., Voinikov V.K. The tebuconazole-based protectant of seeds “Bunker” induces the synthesis of dehydrins during cold hardening and increases the frost resistance of wheat seedlings. Journal Stress Physiology and Biochemistry. 2015, vol. 11, no. 4, pp. 118–127. (In Russian)

33. Korsukova A.V., Borovik O.A., Grabel'nykh O.I., Dorofeev N.V., Pobezhimova T.P., Voinikov V.K. Increase of cold resistance of spring wheat seedlings by the tebuconazole treatment of the seeds. Izvestiya vuzov. Prikladnaya khimiya i biotechnologiya. 2015, no. 4, pp. 30–36. (In Russian)

34. Korsukova A.V., Grabel'nykh O.I., Borovik O.A., Dorofeev N.V., Pobezhimova T.P., Voinikov V.K. The Influence of the treatment of Seeds by Tebuconazole on the Carbohydrates Content and Frost Resistance of Winter Wheat and Winter Rye. Agrokhimiya. 2016, no. 7, pp. 52–58. (In Russian)

35. Korsukova A.V., Gornostai T.G., Grabelnych O.I., Dorofeev N.V., Pobezhimova T.P., Sokolova N.A., Dudareva L.V., Voinikov V.K. Tebuconazole regulates fatty acid composition of etiolated winter wheat seedlings. Journal Stress Physiology and Biochemistry. 2016, vol. 12, no. 2, pp. 72–79.

36. Korsukova A.V., Gornostai T.G., Grabel'- nykh O.I., Dorofeev N.V., Pobezhimova T.P., Dudareva L.V., Voinikov V.K. Fatty Acid Composition of Growths of Winter and Spring Cereals after Processing Seed of Tebuconazole-Based Protectant Bunker. Agrokhimiya. 2018, no. 11, pp. 60–66. (In Russian). DOI: 10.1134/S0002188118110078

37. Navashin P.S. Antifungal chemotherapy. Success and challenges. Antibiotiki i khimioterapiya. 1998, vol. 43, no. 8, pp. 3–6. (In Russian)

38. Mel'nikov N.N., Novozhilov K.V., Belan S.R. Pestitsidy i regulyatory rosta rastenii [Pesticides and plant growth regulators]. Moscow: Khimiya Publ., 1995, 575 p.

39. Baybakova E.V., Nefed’eva E.E., Belopukhov S.L. Assessment of the influence of modern protectants on the germination of seeds and growth of seedlings of grain crops. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya. 2016, vol. 6, no. 3. pp. 57–64. (In Russian). DOI: 10.21285/2227-2925-2016-6-3-57-64

40. Bernardes P.M., Andrade-Vieira L.F., Aragão F.B., Ferreira A., da Silva Ferreira M.F. Toxicity of difenoconazole and tebuconazole in Allium cepa. Water Air and Soil Pollution. 2015, vol. 226, pp. 207. DOI: 10.1007/s11270-015-2462-y

41. Moreyra L.D., Garanzini D.S., Medici S., Menone M.L. Evaluation of growth, photosynthetic pigments and genotoxicity in the wetland macrophyte Bidens laevis exposed to tebuconazole. Bulletin of Environmental Contamination and Toxicology. 2019, vol. 102, no. 3, pp. 353–357. DOI: 10.1007/s00128-019-02539-8

42. Wang S.Y., Sun T., Faust M. Translocation of paclobutrazol, a gibberellin biosynthesis inhibitor, in apple seedlings. Plant Physiology. 1986, vol. 82, no. 1, pp. 11–14.

43. Matadha N.Y., Mohapatra S., Siddamallaiah L., Udupi V.R., Gadigeppa S., Raja D.P. Uptake and distribution of fluopyram and tebuconazole residues in tomato and bell pepper plant tissues. Environmental Science and Pollution Research International. 2019, vol. 26, no. 6, pp. 6077–6086. DOI: 10.1007/s11356-018-04071-4

44. Davis T.D., Steffens G.L., Sankhla N., Janick J. Triazole plant growth regulators. Horticultural Reviews. 1988, vol. 10, pp. 63–105. https://doi.org/10.1002/9781118060834.ch3

45. Ji H., Zhang W., Zhou Y., Zhang M., Zhu J., Song Y., Lu J. A three-dimensional model of lanosterol 14 alpha-demethylase of Candida albicans and its interaction with azole antifungals. Journal of Medicinal Chemistry. 2000, vol. 43, pp. 2493–2505.

46. Benton J.M., Cobb A.H. The modification of phytosterol profiles and in vitro photosynthetic electron transport of Galium aparine L. (cleavers) treated with the fungicide, epoxiconazole. Journal of Plant Growth Regulation. 1997, vol. 22, no. 2, pp. 93–100.

47. Lukatkin A.S., Semenova A.S., Lukatkin A.A. The influence of growth regulators on the existence of toxic effects of herbicides on plants. Agrokhimiya. 2016, no 1, pp. 73–95. (In Russian)

48. Petricca S., Flati V., Celenza G., Di Gregorio J., Lizzi A.R., Luzi C., Cristiano L., Cinque B., Rossi G., Festuccia C., Iorio R. Tebuconazole and econazole act synergistically in mediating mitochondrial stress, energy imbalance, and sequential activation of autophagy and apoptosis in mouse Sertoli TM4 cells: possible role of AMPK/ULK1 axis. Toxicological Sciences. 2019, vol. 169, no. 1, pp. 209–223. DOI: 10.1093/toxsci/kfz031

49. Cao F., Souders C.L. 2nd, Li P., Pang S., Qiu L., Martyniuk C.J. Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio). Environmental Science and Pollution Research International. 2019, vol. 26, no. 5, pp. 4913–4923. DOI: 10.1007/s11356-018-3957-z

50. Ditchenko T.I., Yurin V.M., Golubovich V.P., Kudryashov A.P. Molecular mechanisms of the membranotropic action of 1,2,4-triazole derivatives. Uchenye zapiski. 2002, no. 4, pp. 11–17. (In Russian)

51. Yurin V.M., Ditchenko T.I. Modification Mechanisms of the Ion- Transport Properties of Plant Cell Plasma Membrane under the Effect of the Fungicide Propiconazole. Agrokhimiya. 2009, no. 9, pp. 43–53. (In Russian)

52. Fletcher R.A., Hofstra G. Triadimefon – a plant multiprotectant. Plant Cell Physiology. 1985, vol. 26, no. 4, pp. 775–780.

53. FletcherR.A., Gilley A., Sankhla N., Davis T.D. Triazoles as plant growth regulators and stress protectants. Horticultural Reviews. 2000, vol. 24, pp. 55–138.

54. Ergin S., Ozgur M. Effect of uniconazole and gibberellic acid on height control of pansy. 2012 4th International Conference on Agriculture and Animal Science IPCBEE. 2012, vol. 47, issue 8, pp. 36–40. DOI: 10.7763/IPCBEE. 2012. V47. 8

55. Prusakova L.D., Chizhova S.I. Synthetic regulators of plant ontogenesis. In: Itogi nauki i tekhniki. Ser. Fiziologiya rastenii. T. 7. Prirodnye i sinteticheskie regulyatory ontogeneza rastenii [Resume of science and technology. Series Plant Physiology. Vol. 7. Natural and synthetic regulators of plant ontogenesis]. Moscow: VINITI AN SSSR Publ., 1990, pp. 84–124.

56. Pavlova V.V., Chizhova S.I., Prusakova L.D. Effect of triazolium compounds on the content of abscisic acid in barley plants. Materialy III Mezhdunarodnoi nauchnoi konferentsii “Regulyatory rosta I razvitiya rastenii” [Proc. III Int. Conf. “Regulators of plant growth and development”]. Moscow, 1995, p. 72. (In Russian)

57. Steinbach H.S., Benech-Arnold R.L., Sanchez R.A. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiology. 1997, vol. 113, no. 1, pp. 149–154.

58. Yim K.-O., Kwon Y.W., Bayer D.E. Growth responses and allocation of assimilates of rice seedlings by paclobutrazol and gibberellin treatment. Journal of Plant Growth Regulation. 1997, vol. 16, no. 1, pp. 35–41.

59. Hradilík J., Fišerová H. Interakce mezi giberelinem (GA3) a paclobutrazolem (PP 333) u salátu, hrachu a lnu. Acta Universitatis Agriculturae. (Brno). Facultas agronomica. 1986, vol. 35, no. 4, pp. 5–11.

60. Lucangeli C.D., Bottini R. Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis. 1997, vol. 23, no. 1, pp. 63–72.

61. Matysiak K., Kaczmarek S. Effect of chlorocholine chloride and triazoles – tebuconazole and flusilazole on winter oilseed rape (Brassica napus var. oleifera L.) in response to the application term and sowing density. Journal of plant protection research. 2013, vol. 53, no. 1, pp. 79–88. DOI: https://doi.org/10.2478/jppr-2013-0012

62. Kobli V., Honfi P., Felszner Z., Tilly-mandy A. The influence of fungicides as growth retardant on the growth and flowering of Ismelia carinata Schousb. Bulletin UASVM Horticulture. 2010, vol. 67, no. 1, pp. 359–363. https://www.researchgate.net/publication/260287781

63. Chizhova S.I., Pavlova V.V., Prusakova L.D. Abscisic acid content of and growth of spring barley plants treated with triazoles. Fiziologiya rastenii. 2005, vol. 52, no. 1, pp. 108–114. (In Russian)

64. Kitahata N., Saito S., Miyazawa Y., Umeza wa T., Shimada Y., Min Y.-K., Mizutani M., Hirai N., Shinozaki K., Yoshida S., and Asami T. Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorganic and Medicinal Chemistry. 2005, vol. 13, pp. 4491–4498.

65. Saito S., Okamoto M., Shinoda S., Kushiro T., Koshiba T., Kamiya Y., Hirai N., Todoroki Y., Sakata K., Nambara E., Mizutani M. A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Bioscience, Biotechnology, and Biochemistry. 2006, vol. 70, no. 7, pp. 1731–1739.

66. Vettakkorumakankav N.N., Falk D., Saxena P., Fletcher R.A. A crucial role for gibberellins in stress protection of plants. Plant Cell Physiology.1999, vol. 40, no. 5, pp. 542–548.

67. Kefeli V.I. Natural growth Inhibitors. Fiziologiya rastenii. 1997, vol. 44, no. 3, pp. 471–480. (In Russian)

68. Titov A.F., Talanova V.V. Ustoichivost' rastenii i fitogormony [Resistance of plants and phytohormones]. Ed. by N.N. Nemova. Petrozavodsk: Karelian Scientific Center RAS Publ., 2009, 206 p.

69. Korsukova A.V., Grabel'nykh O.I., Borovik O.A., Dorofeev N.V., Pobezhimova T.P., Voinikov V.K. Effect of tebuconazole-containing preparation Bunker on frost resistance of spring and winter wheat. Materialy Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem “Rasteniya v usloviyakh global'nykh i lokal'nykh prirodno-klimaticheskikh i antropogennykh vozdeistvii” [Proc. AllRus. Sci. Conf. Int. Part. “Plants under global and local climatic and anthropogenic impacts”]. Petrozavodsk: Karelian Scientific Center RAS Publ., 2015, p. 277. (In Russian)

70. Pomortsev A.V., Grabel'nykh O.I., Dorofeev N.V., Peshkova A.A., Voinikov V.K. Relation between frostresistance of winter grains, their respiration rate and water – soluble carbohydrates content in autumn – spring period. Journal of Stress Physiology & Biochemistry. 2013, vol. 9, no. 4, pp. 115–121. (In Russian)

71. Grabel’nych O.I., Borovik O.A., Tauson E.L., Pobezhimova T.P., Katyshev A.I., Pavlovskaya N.S., Koroleva N.A., Lyubushkina I.V., Bashmakov V.Yu., Popov V.N., Borovskii G.B., Voinikov V.K. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Biochemistry. 2014, vol. 79, issue 6, pp. 645–660. (In Russian). DOI: 10.1134/S0006297914060030

72. Korsukova A.V., Borovik O.A., Pobezhimova T.P., Zabanova N.S., Dorofeev N.V., Grabelnych O.I. Differences in the mechanisms of the action of tebuconazole and the tebuconazole-based protecttant on the activity of winter wheat mitochondria. Materialy dokladov II Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem “Mekhanizmy regulyatsii funktsii organell eukarioticheskoi kletki” [Proc. II All-Rus. Sci. Conf. Int. Part. “Mechanisms for regulating functions of eukaryotic cell organelles”]. Irkutsk: Publishing House of the Institute of Geography named after V.B. Sochava SB RAS. 2018, pp. 58–60. (In Russian). DOI: 10.31255/978-5-94797- 318-1-58-60

73. Vereshchagin A.G. Lipidy v zhizni rastenii [Lipids in plant life]. Moscow: Nauka Publ., 2007, 76 p.

74. Shakirova F.M., Allagulova Ch.R., Bezrukova M.V., Aval'baev A.M., Gimalov F.R. The role of endogenous ABA in cold-induced expression of the TADHN dehydrin gene in wheat seedlings. Fiziologiya rastenii. 2009, vol. 56, no. 5, pp. 796–800. DOI: 10.1134/S1021443709050203

75. Kerepesi I., Bányai-Stefanovits E., Galiba G. Cold acclimation and abscisic acid induced alterations in carbohydrate content in calli of wheat genotypes differing in frost tolerance. Plant Physiology. 2004, vol. 161, no. 1, pp. 131–133.

76. Liu L., Cang J., Yu J., Wang X., Huang R., Wang J. and Lu B. Effects of exogenous abscisic acid on carbohydrate metabolism and the expression levels of correlative key enzymes in winter wheat under low temperature. Bioscience, Biotechnology and Biochemistry. 2013, vol. 77, no. 3, pp. 516–525. DOI: 10.1271/bbb.120752

77. Bakht J., Bano A., Dominy P. The role of abscisic acid and low temperature in chickpea (Cicer arietinum) cold tolerance. II. Effects on plasma membrane structure and function. Journal of Experimental Botany. 2006, vol. 57, no. 14, pp. 3707–3715.


Review

For citations:


Pobezhimova T.P., Korsukova A.V., Dorofeev N.V., Grabelnych O.I. Physiological effects of triazole fungicides in plants. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(3):461-476. (In Russ.) https://doi.org/10.21285/2227-2925-2019-9-3-461-476

Views: 2164


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)